

REGIONAL EXPLORATION GOLD RESULTS – 10KM ALONG STRIKE OF APOLLO HILL

Saturn Metals is completing reconnaissance drilling across its large under explored land package. This is part of the Company's strategy to find complementary deposits at the soon to be updated Apollo Hill Mineral Resource which currently stands at 944,000 ounces^{1.} Early-stage exploration is yielding promising geology and results across the greater Apollo Hill system.

HIGHLIGHTS

Artemis – 10km north-west of Apollo Hill

- Regional reconnaissance exploration Aircore (AC) drilling completed in early 2022 has highlighted an exciting new prospect at Artemis, 10km northwest of the Apollo Hill Mineral Resource (35.9Mt @ 0.8g/t Au for 944,000 oz of gold¹) (Figure 1).
- Drillhole AHAC0672 intersected 4m @ 4.08g/t Au from 40m within 33m @ 0.73g/t Au from 24m
- Artemis is located directly along strike from Apollo Hill, highlighting the potential for additional discovery in the expansive, largely untested corridor between the two prospects.
- Mineralisation is associated with prospective geology (quartz veining and shearing in bed rock).
- The width and grade of the AHAC0672 intersection is similar to some zones in the Apollo Hill deposit.
- Mineralisation remains open for additional drill testing.

Bob's Prospect – 7km east of Apollo Hill

- A step out AC program was completed at Bob's prospect in February with the aim of extending the mineralisation system defined in late 2021 (including Reverse Circulation (RC) intersections of 5m @ 6.82g/t Au from 130m – AHRC0825).
- New results (Figure 1), effectively provide a strike length increase of 600m in both the north and south directions and include:
 - 4m @ 0.68g/t Au from 64m AHAC0597
 - 4m @ 0.47g/t Au from 84m AHAC0536
 - 4m @ 0.41g/t Au from 130m AHAC0541

Follow Up Work Commenced

- A follow up 5,000m, fifty-hole AC and RC extensional drilling program is planned around significant intersections at Artemis and Bob's.
- AC drilling has re-commenced at Artemis.
- RC drilling has re-commenced at Bob's and assays are pending for four RC holes completed to date.

¹ Details of the Mineral Resource which currently stands at 35.9 Mt @ 0.8 g/t Au for 944,000 oz Au and a breakdown by category are presented in Table 1a (page 7 of this document) along with the associated Competent Persons statement and details of the ASX announcement that this information was originally published in.

Saturn Metals Limited (ASX:STN) ("**Saturn**", "**the Company**") is pleased to announce significant results from reconnaissance and step out AC drilling across its 100% owned, 1,000km² Apollo Hill Gold Project, 60km south-east of Leonora in the Western Australian Goldfields.

Artemis

Figure 1 shows a plan of significant results at Artemis. Results are located 10km along strike to the northwest of the Apollo Hill on the geological corridor termed the 'Apollo Hill Super Structure'.

Drilling at Artemis is still widely spaced with the AHAC0672 4m @ 4.08 g/t Au result being returned on a single fence line traverse program of 100m spaced holes. The closest drilling along strike towards Apollo Hill is 6km away, where drilling is predominantly historical shallow set depth holes. These set depth holes are deemed to have been largely ineffective as they did not penetrate the cover sequence. Mineralisation therefore remains open. A large, interpreted strike length is available for extensional drilling to build on this initial promising result. An AC rig is onsite.

Figure 2 shows a geological cross section of the Artemis Prospect. The discovery intersection of **4m @ 4.08g/t Au** from 40m within **33m @ 0.73g/t Au** from 24m in hole AHAC0672 is hosted within sheared rocks similar to those at Apollo Hill. The intersection width and grade are similar to some mineralised zones at Apollo Hill.

Bob's – 7km east of Apollo Hill

Extensional AC drilling has delivered 600m strike extensions to the mineralised system at both the northern and southern end of Bob's (Figure 1). Results including 4m @ 0.68g/t Au from 64m in AHAC0597 have been returned underneath a relatively shallow cover sequence (Plate 1).

Focus has now shifted to additional RC drilling to target underneath previous significant intersections including 5m @ 6.82g/t Au from 130m – AHRC0825, 5m @ 3.15g/t Au from 168m – AHRC0827 and 8m @ 1.04g/t Au from 153m – AHRC0822 (see Saturn ASX Announcement dated 27 January 2022). Assays are pending for four RC holes completed to date (hole details listed in Appendix 2).

Plate 1 – AC Drilling at Bob's Prospect– 7km east of Apollo Hill

New Regional Intersection 2km East of Bob's

In addition, an intersection of 4m @ 0.33g/t from 56m was returned in basalts and sediments in AC hole AHAC0628 drilled 2km to the east of Bob's on an access track (Figure 3). Further work is planned to investigate this standalone anomaly where drilling along the track remains widely spaced.

Appendix 1 lists significant intersections received from 191 holes and 13,000m of drilling reported in this announcement over regional targets on the Apollo Hill project leases (Figure 3). Appendix 2 lists relevant hole details.

Saturn Managing Director, Ian Bamborough said: *The results at Artemis are highly significant as they could be the first step towards locating another deposit with resource grade mineralisation near Apollo Hill. Artemis exhibits several favourable geological ingredients and is located on the interpreted Apollo Hill Super Structure. Follow up AC drilling is underway at Artemis and RC drilling is planned.*

The mineralised footprint at Bob's is now 4km long. Assays are pending for follow up RC drill holes completed down plunge of several highly significant intersections.

This announcement has been approved for release by the Saturn Metals Limited Board of Directors.

IAN BAMBOROUGH Managing Director

For further information please contact:

Ian Bamborough Managing Director Saturn Metals Limited +61 (0)8 6234 1114 info@saturnmetals.com.au

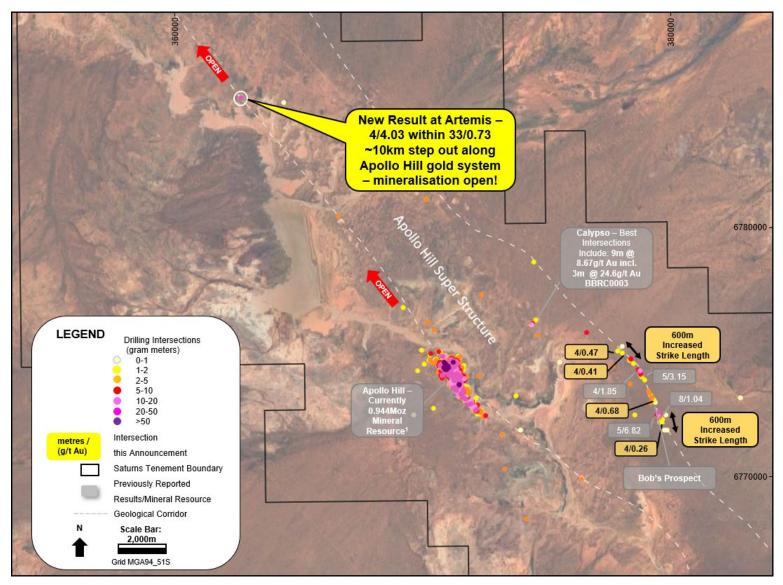


Figure 1 – Plan of significant Aircore results at Artemis and Bob's (10km along strike and 7km to the east of Apollo Hill respectively), Saturn Metals tenement outline and significant prospects on aerial image background.

^(a) This diagram contains exploration results and historic exploration results as originally reported in fuller context in Saturn Metals Limited's ASX Announcements as published on the Company's website. Saturn Metals Limited confirms that it is not aware of any new information or data that materially affects the information on results noted.

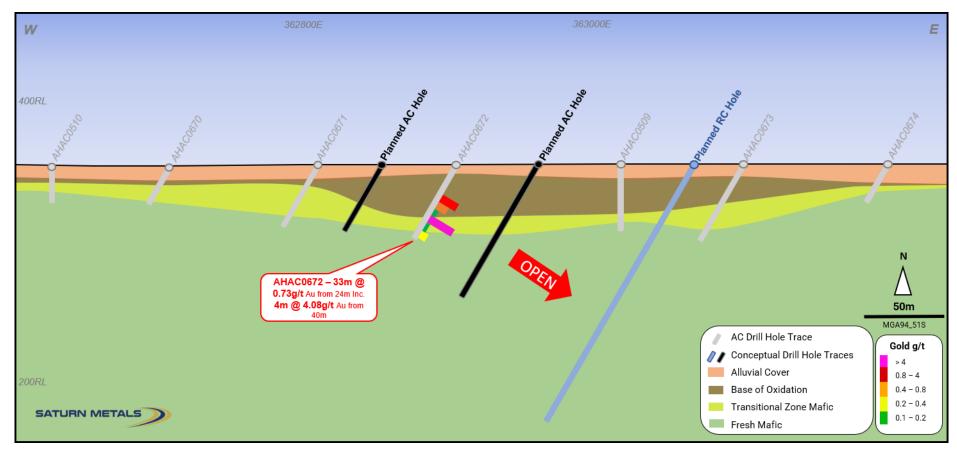
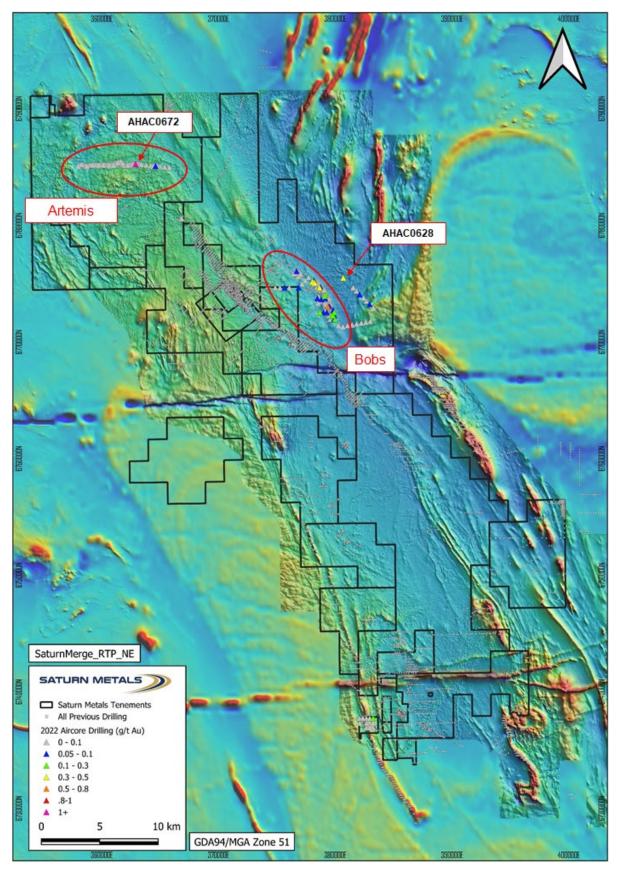



Figure 2 – Geological cross section – E-W of Artemis Prospect – drilling required/planned to target beneath the anomaly.

Figure 3 – Hole location diagram – holes in this announcement as triangle symbols.

^(a) This diagram contains exploration results and historic exploration results as originally reported in fuller context in Saturn Metals Limited ASX Announcements as published on the Company's website. Saturn Metals Limited confirms that it is not aware of any new information or data that materially affects the information on results noted.

Competent Persons Statement – Resource:

¹The information for the Mineral Resource included in this report is extracted from the report entitled (Apollo Hill Gold Resource Upgraded To 944,000oz) created on 28 January 2021 and is available to view on the Saturn Metals Limited website. Saturn Metals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Saturn Metals Ltd confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Table 1a* January 2021 Mineral Resource Statement; 0.4 g/t Au cut-off by oxidation domain within a 1.4 revenue factor pit shell to represent reasonable prospects for eventual economic extraction.

Grade	ę		Measured			Indicated			Inferred			MII Totai	
Lower Cut-off G (Au g/t)	Oxidation state	Tonnes (Mtonnes)	Au (g/t)	Au Metal (Kozs)	Tonnes (Mtonnes)	Au (g/t)	Au Metal (Kozs)	Tonnes (Mtonnes)	Au (g/t)	Au Metal (Kozs)	Tonnes (Mtonnes)	Au (g/t)	Au Metal (Kozs)
	Oxide	0	0	0	0.5	0.8	13	0.3	0.8	8	0.9	0.8	21
0.4	Transitional	0	0	0	3.4	0.8	91	0.8	0.8	21	4.3	0.8	112
0.4	Fresh	0	0	0	17.3	0.8	452	13.5	0.8	359	30.8	0.8	810
	Total	0	0	0	21.2	0.8	556	14.7	0.8	388	35.9	0.8	944

Preliminary Whittle pit optimizations using approximated regional mining and processing costs for multiple processing scenarios have been run on the resource model using a gold price of US\$1,700/oz to generate a range of pit shells and cut-off grades. A pit shell for a combined mill and heap leach scenario representing a revenue factor of 1.4 was selected as a nominal constraint within which to report the Apollo Hill Mineral Resource, thereby satisfying the JORC Code requirement for a Mineral Resource to have reasonable prospects for eventual economic extraction. Other relevant information is described in the JORC Code Table 1 as appropriate. A nominal 0.4 g/t Au lower cut-off grade was selected for all material types. There is no material depletion by mining within the model area. Estimation is by localised multiple indicator kriging for Apollo Hill zone and the Apollo Hill Hanging-wall zone; estimation of Ra and Tefnut zone used restricted ordinary kriging due to limited data. The model assumes a rotated 5 m by 12.5 m by 5 m RL Selective Mining Unit (SMU) for selective open pit mining. The final models are SMU models and incorporate internal dilution to the scale of the SMU. Technically the models do not account for mining related edge dilution and ore loss. These parameters should be considered during the mining study as being dependent on grade control, equipment and mining configurations including drilling and blasting. Classification is according to JORC Code Mineral Resource categories. Totals may vary due to rounded figures.

Competent Persons Statement – Exploration:

The information in this report that relates to exploration targets and exploration results is based on information compiled by Ian Bamborough, a Competent Person who is a Member of The Australian Institute of Geoscientists. Ian Bamborough is a fulltime employee and Director of the Company, in addition to being a shareholder in the Company. Ian Bamborough has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ian Bamborough consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

^(a) This document contains exploration results and historic exploration results as originally reported in fuller context in Saturn Metals Limited ASX Announcements, Quarterly Reports and Prospectus - as published on the Company's website. Saturn Metals Limited confirms that it is not aware of any new information or data that materially affects the information on results noted. Announcement dates referred to include but are not limited to: 19/11/2021, 27/01/2022 and 28/01/2022.

Appendix 1:

Significant Regional Exploration AC Drill Results

Hole Number	Down Hole Width (m)	Grade (g/t Au)	From (m)
AHAC0494	4	0.13	24
AHAC0505	4	0.10	32
AHAC0521	4	0.17	80
AHAC0522	4	0.17	84
AHAC0524	8	0.17	20
incl.	4	0.26	24
AHAC0524	4	0.19	60
AHAC0527	4	0.12	68
AHAC0532	4	0.17	92
AHAC0532	7	0.28	108
Incl.	3	0.41	112
AHAC0536	4	0.47	84
AHAC0541	4	0.41	116
AHAC0561	8	0.17	40
incl.	4	0.29	44
AHAC0561	12	0.11	68
incl.	8	0.14	68
AHAC0562	1	0.12	87
AHAC0597	10	0.36	64
incl.	4	0.68	64
AHAC0610	4	0.10	28
AHAC0611	8	0.14	48
incl.	4	0.21	48
AHAC0611	4	0.14	76
AHAC0628	20	0.14	40
incl.	8	0.23	52
incl.	4	0.33	56
AHAC0672	33	0.73	24
incl.	4	4.08	40

Appendix 2:

Completed and Reported AC Holes

	Easting	Northing	RL			Depth
Hole Number	GDA94-Z51	GDA94-Z51	(m)	Dip°	Azi°	(m)
AHAC0490	382086	6737753	399	-60	270	58
AHAC0491	382375	6737758	398	-60	270	13
AHAC0492	382666	6737754	396	-60	270	54
AHAC0493	382958	6737753	392	-60	270	71
AHAC0494	383252	6737754	389	-60	270	93
AHAC0495	382100	6737355	400	-60	270	15
AHAC0496	382677	6737359	397	-60	270	57
AHAC0497	382971	6737359	394	-60	270	66
AHAC0498	383261	6737358	392	-60	270	79
AHAC0499	382665	6736960	397	-60	270	51
AHAC0500	382988	6736962	394	-60	270	78
AHAC0501	383248	6736958	394	-60	270	42
AHAC0502	365802	6784986	354	-90	0	69
AHAC0503	365401	6785026	355	-90	0	81
AHAC0504	365000	6785064	355	-90	0	46
AHAC0505	364610	6785106	354	-90	0	44
AHAC0506	364205	6785148	353	-90	0	86
AHAC0507	363810	6785189	353	-90	0	82
AHAC0508	363403	6785228	353	-90	0	51
AHAC0509	363020	6785270	353	-90	0	46
AHAC0510	362620	6785242	352	-90	0	26
AHAC0511	362229	6785175	353	-90	0	9
AHAC0512	361012	6785182	352	-90	0	37
AHAC0513	360235	6785188	351	-90	0	26
AHAC0514	359833	6785186	358	-90	0	16
AHAC0515	359430	6785187	360	-90	0	3
AHAC0516	359037	6785164	358	-90	0	18
AHAC0517	358649	6785112	362	-90	0	2
AHAC0518	358274	6785226	362	-90	0	17
AHAC0519	379490	6772265	357	-60	270	91
AHAC0520	379595	6772269	358	-60	270	97
AHAC0521	379689	6772260	358	-60	270	96
AHAC0522	379785	6772260	358	-60	270	94
AHAC0523	379895	6772259	358	-60	270	124
AHAC0524	379793	6772360	358	-60	270	98
AHAC0525	379895	6772357	358	-60	270	110
AHAC0526	379851	6772401	358	-60	270	108
AHAC0527	379931	6772560	359	-60	270	107
AHAC0528	379736	6772763	358	-60	270	103
AHAC0529	379835	6772763	358	-60	270	107
AHAC0530	378532	6774524	356	-60	225	87

	Easting	Northing	RL			Depth
Hole Number	GDA94-Z51	GDA94-Z51	(m)	Dip°	Azi°	(m)
AHAC0531	378607	6774593	356	-60	225	100
AHAC0532	378671	6774664	356	-60	225	116
AHAC0533	378738	6774735	357	-60	225	103
AHAC0534	378812	6774804	357	-60	225	113
AHAC0535	378678	6771493	353	-60	225	110
AHAC0536	378033	6775163	355	-60	225	120
AHAC0537	378107	6775226	355	-60	225	113
AHAC0538	378182	6775306	356	-60	225	123
AHAC0539	378252	6775373	356	-60	225	102
AHAC0540	378176	6775015	356	-60	225	104
AHAC0541	378241	6775091	356	-60	225	121
AHAC0542	378319	6775159	356	-60	225	113
AHAC0543	378392	6775230	356	-60	225	110
AHAC0544	378463	6775034	356	-60	225	117
AHAC0545	378536	6775113	357	-60	225	117
AHAC0546	378426	6774692	356	-60	225	104
AHAC0547	379028	6774450	357	-90	0	81
AHAC0548	379097	6774525	357	-90	0	103
AHAC0549	379064	6774361	357	-60	225	72
AHAC0550	379132	6774436	357	-60	225	78
AHAC0551	379118	6774250	356	-60	225	80
AHAC0552	379184	6774323	357	-60	225	102
AHAC0553	378479	6773758	355	-60	225	121
AHAC0554	378585	6773869	355	-60	225	91
AHAC0555	378614	6773904	355	-60	225	122
AHAC0556	378511	6773380	355	-60	225	118
AHAC0557	378654	6773527	356	-60	225	106
AHAC0558	378804	6773673	356	-60	225	96
AHAC0559	378954	6773818	356	-60	225	52
AHAC0560	379018	6773888	356	-60	225	51
AHAC0561	379087	6773961	357	-60	225	80
AHAC0562	379161	6774030	357	-60	225	87
AHAC0563	379022	6773599	356	-60	225	45
AHAC0564	379091	6773669	357	-60	225	44
AHAC0565	379162	6773741	357	-60	225	54
AHAC0566	379234	6773819	357	-60	225	65
AHAC0567	376466	6775860	354	-60	225	106
AHAC0568	376543	6775941	354	-60	225	116
AHAC0569	376615	6776012	354	-60	225	134
AHAC0570	376695	6776089	354	-60	225	121
AHAC0571	376769	6776165	355	-60	225	119
AHAC0572	376758	6775585	354	-60	225	109
AHAC0573	376829	6775659	354	-60	225	113
AHAC0574	376898	6775730	355	-60	225	102

	Easting	Northing	RL			Depth
Hole Number	GDA94-Z51	GDA94-Z51	(m)	Dip°	Azi°	(m)
AHAC0575	376973	6775798	355	-60	225	94
AHAC0576	377045	6775870	355	-60	225	96
AHAC0577	374865	6774664	352	-60	270	93
AHAC0578	375267	6774669	350	-60	270	117
AHAC0579	375665	6774673	352	-60	270	87
AHAC0580	375681	6774666	352	-60	270	122
AHAC0581	376069	6774669	351	-60	270	112
AHAC0582	376869	6774680	353	-60	225	108
AHAC0583	377167	6774992	353	-60	225	72
AHAC0584	377442	6775286	355	-60	225	51
AHAC0585	377724	6775570	355	-60	225	94
AHAC0586	379226	6773237	357	-60	225	37
AHAC0587	379127	6773401	356	-60	225	41
AHAC0588	379165	6773318	357	-60	225	38
AHAC0589	379339	6773618	357	-60	225	86
AHAC0590	379412	6773691	357	-60	225	73
AHAC0591	379381	6773533	357	-60	225	91
AHAC0592	379452	6773604	357	-60	225	114
AHAC0593	379531	6773682	357	-60	225	88
AHAC0594	379456	6773452	358	-60	225	108
AHAC0595	379575	6773285	358	-60	225	121
AHAC0596	379576	6773285	352	-60	225	94
AHAC0597	379357	6773067	352	-60	225	75
AHAC0598	378991	6772582	352	-90	225	66
AHAC0599	379136	6772721	352	-90	225	48
AHAC0600	379272	6772870	352	-90	225	29
AHAC0601	379432	6773000	352	-60	225	57
AHAC0602	379500	6773067	352	-60	225	77
AHAC0603	379572	6773140	352	-60	225	92
AHAC0604	379644	6773212	352	-60	225	103
AHAC0605	379586	6771958	352	-60	270	98
AHAC0606	379687	6771959	352	-60	270	86
AHAC0607	379791	6771958	352	-60	270	92
AHAC0608	379895	6771957	352	-60	270	133
AHAC0609	379998	6771957	352	-60	270	128
AHAC0610	379287	6772559	352	-60	270	70
AHAC0611	378685	6772555	352	-60	270	116
AHAC0612	378886	6772555	352	-60	270	62
AHAC0613	380284	6771433	352	-60	270	135
AHAC0614	380664	6771326	352	-60	270	150
AHAC0615	381057	6771403	352	-90	0	104
AHAC0616	381449	6771479	352	-90	0	114
AHAC0617	381842	6771555	352	-90	0	96
AHAC0618	382235	6771631	352	-90	0	82

	Easting	Northing	RL			Depth
Hole Number	GDA94-Z51	GDA94-Z51	(m)	Dip°	Azi°	(m)
AHAC0619	382627	6771707	352	-90	0	85
AHAC0620	383020	6771783	352	-90	0	94
AHAC0621	383221	6772959	352	-90	0	62
AHAC0622	382934	6773238	352	-90	0	53
AHAC0623	382648	6773517	352	-90	0	3
AHAC0624	382361	6773796	352	-90	0	18
AHAC0625	382076	6774076	352	-90	0	87
AHAC0626	381798	6774364	352	-90	0	63
AHAC0627	381520	6774651	352	-90	0	73
AHAC0628	380685	6775514	352	-90	0	76
AHAC0629	357996	6785097	355	-60	270	49
AHAC0630	358084	6785144	355	-60	270	29
AHAC0631	358172	6785192	355	-60	270	25
AHAC0632	358362	6785199	355	-60	270	16
AHAC0633	358458	6785170	355	-60	270	40
AHAC0634	358554	6785141	355	-60	270	19
AHAC0635	358748	6785097	355	-60	270	14
AHAC0636	358848	6785103	355	-60	270	19
AHAC0637	358943	6785129	355	-60	270	28
AHAC0638	359133	6785188	355	-60	270	21
AHAC0639	359233	6785187	355	-60	270	7
AHAC0640	359333	6785187	355	-60	270	5
AHAC0641	359533	6785187	355	-60	270	3
AHAC0642	359633	6785186	355	-60	270	19
AHAC0643	359733	6785186	355	-60	270	15
AHAC0644	359933	6785186	355	-60	270	3
AHAC0645	360033	6785187	355	-60	270	4
AHAC0646	360133	6785187	355	-60	270	23
AHAC0647	360333	6785188	355	-60	270	32
AHAC0648	360433	6785188	355	-60	270	36
AHAC0649	360533	6785189	355	-60	270	42
AHAC0650	360632	6785189	355	-60	270	36
AHAC0651	360733	6785187	355	-60	270	44
AHAC0652	360833	6785185	355	-60	270	40
AHAC0653	360932	6785183	355	-60	270	45
AHAC0654	361117	6785241	355	-60	270	42
AHAC0655	361204	6785290	355	-60	270	45
AHAC0656	361291	6785339	355	-60	270	43
AHAC0657	361375	6785386	355	-60	270	45
AHAC0658	361472	6785424	355	-60	270	43
AHAC0659	361565	6785461	355	-60	270	32
AHAC0660	361655	6785481	355	-60	270	29
AHAC0661	361728	6785414	355	-60	270	18
AHAC0662	361807	6785342	355	-60	270	18

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL (m)	Dip°	Azi°	Depth (m)
AHAC0663	361875	6785278	355	-60	270	22
AHAC0664	361949	6785210	355	-60	270	34
AHAC0665	362022	6785142	355	-60	270	24
AHAC0666	362116	6785151	355	-60	270	3
AHAC0667	362312	6785191	355	-60	270	14
AHAC0668	362410	6785209	355	-60	270	3
AHAC0669	362509	6785227	355	-60	270	12
AHAC0670	362707	6785252	355	-60	270	30
AHAC0671	362807	6785263	355	-60	270	49
AHAC0672	362906	6785274	355	-60	270	58
AHAC0673	363105	6785261	355	-60	270	60
AHAC0674	363204	6785250	355	-60	270	31
AHAC0675	363304	6785239	355	-60	270	36
AHAC0676	364409	6785126	355	-60	270	69
AHAC0677	364509	6785113	355	-60	270	65
AHAC0678	364705	6785091	355	-60	270	30
AHAC0679	364805	6785083	355	-60	270	34
AHAC0680	366892	6780468	350	-60	225	112
AHAC0681	366863	6780628	350	-60	225	88

Completed RC Holes

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL (m)	Dip°	Azi°	Depth (m)
AHRC0828	379790	6772557	350	-60	270	316
AHRC0829	379791	6772660	350	-55	270	270
AHRC0830	379468	6773349	373	-60	225	244
AHRC0832	379018	6774318	356	-60	225	295

Appendix 3:

Saturn Metals Project Areas

Apollo Hill (29.15°S and 121.68°E) is located approximately 60km south-east of Leonora in the heart of WA's goldfields region (Figure 4). The deposit and the Apollo Hill project are 100% owned by Saturn and are surrounded by good infrastructure and several significant gold deposits. The Apollo Hill Project has the potential to become a large tonnage, simple metallurgy, low strip open pit mining operation.

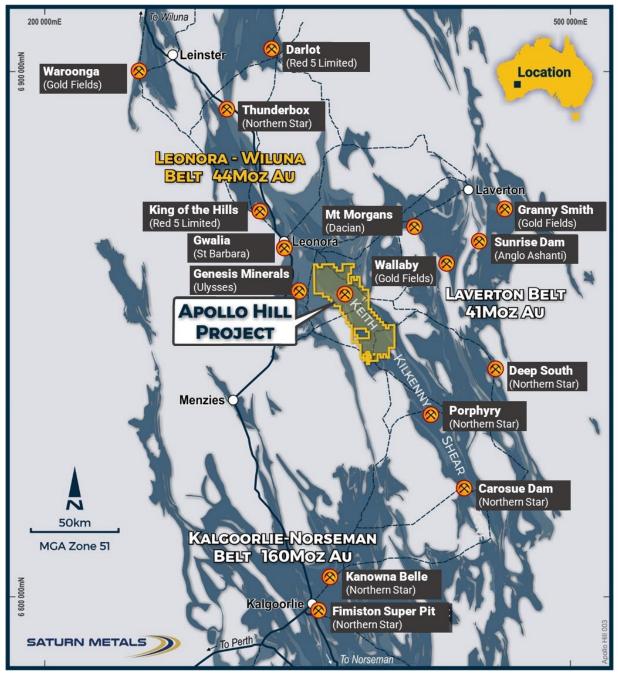


Figure 4 – Apollo Hill location, Saturn Metals' tenements and surrounding gold deposits, gold endowment and infrastructure.

In addition, Saturn has a second quality gold exploration project in Australia. The Company has an option to earn an 85% joint venture interest in the West Wyalong Project (Figure 5), which represents a high-grade vein opportunity on the highly gold prospective Gilmore suture within the famous Lachlan Fold belt of NSW.

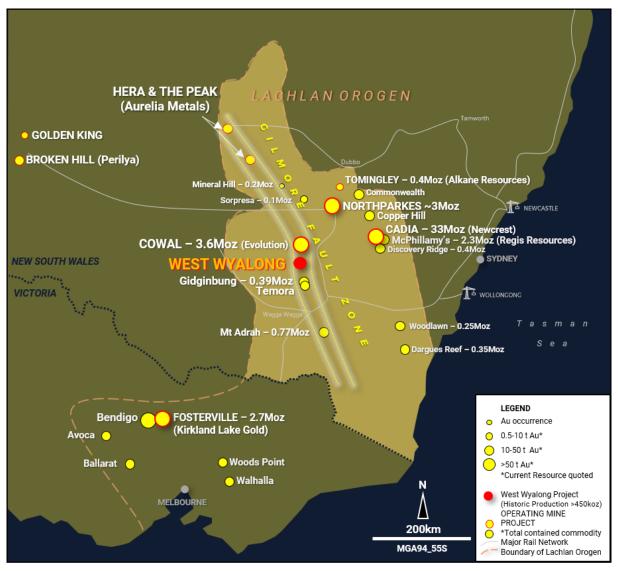


Figure 5 – Regional setting and location of the West Wyalong Gold Project in relation to other gold projects in New South Wales and Victoria (map taken from Saturn ASX announcement on 28 April 2020 where full references are provided).

Appendix 4:

JORC Code, 2012 Edition – Table 1 – Apollo Hill Exploration Area

Section 1 Sampling Techniques and Data

(Criteria in this section apply to the Apollo Hill, Apollo Hill Regional, Apollo Hill Hanging-wall and Ra and Tefnut exploration areas all succeeding sections).

Table II Extract of JORC Code 2012 Table 1

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (e.g. submarine nodules) may warrant disclosure of detailed information.	Measures taken to ensure the representivity of RC and AC sampling include close supervision by geologists, use of appropriate sub-sampling methods, routine cleaning of splitters and cyclones, and AC/RC rigs with sufficient capacity to provide generally dry, reasonable recovery samples. Information available to demonstrate sample representivity includes AC/RC sample weights, sample recovery, sample consistency, field duplicates, standards and blanks. AC holes were sampled over 4m intervals using a cone-splitter mounted to the AC drill rig. RC holes were sampled over 1m intervals using a cone-splitter mounted to the RC drill rig. AC/RC samples were analyzed by ALS in both Kalgoorlie and Perth and SGS in Kalgoorlie. At the laboratories, the samples were oven dried and crushed to 90% passing 2 mm, and pulverized to 95% passing 106 microns, with analysis by 50 g fire assay. AC/RC samples were generally taken at 1 m interval but if composited were composited to 4 m to produce a 3 kg representative sample to be submitted to the laboratory. If the 4 m composite sample was anomalous (Au>0.16 g/t), the original 1 m samples were retrieved and submitted to the laboratory. In general, the expected mineralized zones are all sampled using 1 m intervals. Diamond core was drilled HQ3 and NQ2 dependent on weathering profile and ground conditions. The core was cut in half using a Corewise diamond saw at the ALS laboratory in Perth, where both half and full core were submitted for analysis. Half and full core samples were taken with a diamond saw, generally on 1 m intervals, dependent on geological boundaries where appropriate (lengths ranging from a minimum 0.3 m to a maximum of 1.2 m). Whole core samples were taken within the zones of mineralization to account for coarse grained nature of the gold. Sampling was undertaken using Saturn Metals Limited (STN) sampling and QAQC procedures in line with industry best practice, which includes the submission of standards, blanks and duplicates at regular intervals within each submission,
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Standard AC diameters and bits were used. Reverse Circulation drilling used either a 4.5 inch or 5.5 inch face-sampling bit. Diamond core was HQ3 of NQ2 diameter core. All RC drillholes were surveyed by Gyro, every 30 m down hole. All core was oriented using a Reflex orientation tool, which was recorded at the drill site, and all core pieced back together and orientated at the STN core yard at Apollo Hill.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC sample recovery was visually estimated by volume for each 1 m bulk sample bag and recorded digitally in

Criteria	JORC Code Explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	the sample database. Very little variation was observed.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Measures taken to maximize recovery for AC/RC drilling included use of face sampling bits and drilling rigs of sufficient capacity to provide generally dry, high recovery samples. RC sample weights indicate an average recovery of 85% to 95% and were dry.
		The cone splitter was regularly cleaned with compressed air at the completion of each rod. The RC Drilling was completed using auxiliary compressors and boosters to keep the hole dry and ensure the sample was lifted to the sampling equipment as efficiently as possible. The cyclone and cone splitter were kept dry and clean, with the cyclone cleaned after each drillhole and the splitter cleaned after each rod to minimize down-hole or cross-hole contamination. The 3 kg calico bag samples representing 1 m were taken directly from the cyclone and packaged for freight to Kalgoorlie. The calico represents both fine and coarse material from the drill rig. Diamond core recovery was measured and recorded for each drill run. The core was physically measured by tape and recorded for each run. Core recovery was recorded as percentage recovered. All data was loaded into the STN database. Diamond drilling utilized drilling additives and muds to ensure the hole was conditioned to maximize recoveries and sample quality. There was no observable relationship between recovery and grade, or preferential bias between hole- types observed at this stage. There was no significant loss of core reported in the mineralized parts of the diamond drillholes to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Drillholes were geologically logged by industry standard methods, including depth, colour, lithology, alteration, sulphide and visible gold mineralization and weathering. AC bottom of holes or interesting geology chip trays are retained.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	

Criteria	JORC Code Explanation	Commentary
		sufficiently representative sub-samples for the current interpretation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Sampling included field duplicates, blind reference standards, field blanks and inter-laboratory checks to confirm assay precision and accuracy with sufficient confidence for the current results, at a rate of 5%. Samples were submitted to ALS in Kalgoorlie and Perth and SGS in Kalgoorlie where they were prepared, processed and analyzed via 50 g charge fire assay.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	No independent geologists were engaged to verify results. STN project geologists were supervised by the Company's Exploration Manager. No adjustments were made to any assays of data. Logs were recorded by field geologists on hard copy sampling sheets which were entered into spreadsheets for merging into a central SQL database. Laboratory assay files were merged directly into the database. The project geologists routinely validate data when loading into the database.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Collars are initially surveyed by hand-held GPS, utilizing GDA94, Zone 51. Final drillhole collars are all surveyed by DGPS by ABIMS & Goldfield Surveyors. All RC and diamond holes were down-hole surveyed using a gyroscopic survey tool. A topographic triangulation was generated from drillhole collar surveys and the close-spaced (50 m) aeromagnetic data.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Apollo Hill mineralization has been tested by generally 30 m spaced traverses of south- westerly inclined drillholes towards 225°. Across strike spacing is variable. Material within approximately 50 m of surface has been generally tested by 2 m to 30 m spaced holes, with deeper drilling ranging from locally 20 m to greater than 6 m spacing. Bobs has currently been drilled on a 200m-100m line spacing by 100m-50m drill spacing. The data spacing is sufficient to establish geological and grade continuity.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Mineralized zones are interpreted to dip at an average of around 30° to 60° towards the northeast. Detailed orientations of all short-scale mineralized features have not yet been confidently established. The majority of the drillholes were inclined at around 60° to the southwest.
Sample security	The measures taken to ensure sample security.	Apollo Hill is in an isolated area, with little access by the general public. STN's field sampling was supervised by STN geologists. Sub-samples selected for assaying were collected in heavy-duty poly-woven bags which were immediately sealed. These bags were delivered to the assay laboratory by independent couriers, STN employees or contractors. Results of field duplicates, blanks and reference material, and the general consistency of results between sampling phases provide confidence in the general reliability of the drilling data.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person independently reviewed STN sample quality information and database validity. These reviews included consistency checks within

Criteria	JORC Code Explanation	Commentary
		and between database tables and comparison of assay entries with original source records for STN's drilling. These reviews showed no material discrepancies. The Competent Person considers that the Apollo Hill drilling data has been sufficiently verified to provide an adequate basis for the current reporting of exploration results.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section).

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Apollo Hill Project lies within Exploration License E39/1198, M31/486 and M39/296. These tenements are wholly owned by Saturn Metals Limited. These tenements, along with certain other tenure, are the subject of a 5% gross over-riding royalty (payable to HHM) on Apollo Hill gold production exceeding 1 Moz. M39/296 is the subject of a \$1/t royalty (payable to a group of parties) on any production. The tenements are in good standing and no known impediments exist. The bob's prospect sits in Apollo Hill Exploration License E39/1984.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	AC, RC and diamond drilling by previous tenement holders provides around 44% of the estimation dataset. The data is primarily from RC and diamond drilling by Battle Mountain, Apex Minerals, Fimiston Mining, Hampton Hill, Homestake, MPI and Peel Mining.
Geology	Deposit type, geological setting and style of mineralization.	The Apollo Hill project comprises two deposits/trends: the main Apollo Hill deposit in the northwest of the project area, and the smaller Ra-Tefnut Deposits in the south. Gold mineralization is associated with quartz veins and carbonate-pyrite alteration along a steeply north-east dipping contact between felsic rocks to the west, and mafic dominated rocks to the east. The combined mineralized zones extend over a strike length of approximately 2.4 km and have been intersected by drilling to approximately 350 m vertical depth. The depth of complete oxidation averages around 4 m with depth to fresh rock averaging around 21 m. Gold mineralisation at Bob's is associated with sheared mafic rocks with quartz veining.
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Any relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices. No information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	For exploration data, no top-cuts have been applied. All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting). No metal equivalent values are used for reporting exploration results.

Criteria	JORC Code Explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralization widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	All drillhole intercepts are measured in downhole meters, with true widths estimated to be about 60% of the down-hole width. The orientation of the drilling has the potential introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Refer to Figures and Tables within the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	For any exploration results, all results are reported, no lower cut-off or top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	It is anticipated that further work will include infill and step out drilling and follow up RC drilling. This work will be designed to improve confidence in and test potential extensions to the current resource estimates/Bobs mineralisation. AC drilling will continue across the nearby geological terrain.

