

EXCITING REGIONAL DRILL RESULTS – APOLLO HILL GOLD PROJECT

Saturn Metals' strategy of exploring for complementary gold deposits adjacent to the newly upgraded 1.47Moz ounce Apollo Hill Mineral Resource¹ continues to show promising results at multiple Prospects (Figure 1).

SUMMARY

Bob's Prospect – 7km east of the Apollo Hill Mineral Resource

- Follow up Reverse Circulation (RC) drilling at Bob's has returned several exciting intersections and further vectors for higher grade mineralisation.
- Results include:
 - 10m @ 2.96g/t Au from 126m AHRC0834
 - 3m @ 3.41g/t Au from 215m AHRC0833
- Results extend mineralisation along strike from previously reported significant intersections, which include **5m @ 6.82g/t Au** AHRC0825 and **5m @ 3.15g/t Au** AHRC0827 (*ASX 27 January 2022*).
- Further RC drilling is planned.

Hercules – 17km south-east of the Apollo Hill Mineral Resource

- Aircore and RC drilling following up on earlier significant intersections including **20m @ 2.27g/t Au from 24m** AHAC0925 (*ASX 19 May 2022*) has increased the strike length of the Hercules mineralised zone to over 3km with important new intersections including:
 - 4m @ 4.57g/t Au from 54m AHRC0836
 - 4m @ 1.97g/t Au from 64m AHAC1006
 - 4m @ 1.44g/t Au from 40m within 20m @ 0.57g/t Au from 24m AHAC0997
- Infill drilling is planned around higher-grade intersections where drilling is still broadly spaced.

Aquarius – 25km south-east of the Apollo Hill Mineral Resource

- New Aircore drilling results at Aquarius show coherent zones of mineralisation that warrant further drilling; significant intersections include:
 - 4m @ 1.86g/t Au from 64m within 9m @ 0.69g/t Au from 64m AHAC0763
 - 4m @ 1.26g/t Au from 72m within 12m @ 0.63g/t Au from 68m AHAC0746
- Follow up drilling is planned around, and underneath, robust intersections where mineralisation remains open.

Artemis – 10km north-west of the Apollo Hill Mineral Resource

- Step out Aircore drilling along trend from discovery hole AHAC0672 (4m @ 4.08g/t Au from 40m within 33m @ 0.73g/t Au from 24m AHAC0672) (ASX 31 March 2022) has lengthened the Artemis system to 800m in strike.
- Significant new intersections returned from the broad space drilling completed to date include:
 - 4m @ 0.49g/t Au from 40m and 4m @ 0.53g/t Au from 60m AHRC0880
 - 8m @ 0.25g/t Au from 36m AHAC0920
- Further infill Aircore drilling is planned to accurately target a newly interpreted structural corridor immediately to the west of the recent results.

¹ Details of the Mineral Resource which currently stands at 76.6 Mt @ 0.6 g/t Au for 1,469,000 oz Au and a breakdown by category are presented in Table 1a (page 10) of this document) along with the associated Competent Persons statement and details of the ASX announcement that this information was originally published in.

Saturn Metals Limited (ASX:STN) ("**Saturn**", "**the Company**") is pleased to announce significant results from Reverse Circulation (RC) and Aircore (AC) drilling across its 100% owned, 1,000km² Apollo Hill Gold Project, 60km south-east of Leonora in the Western Australian Goldfields.

Further exploration of the Apollo Hill Super-Structure and regionally gold prospective Keith Kilkenny Shear is developing several important new gold systems. Figure 1 shows the Prospects in relation to the Apollo Hill Mineral Resource and the wider Saturn Metals tenement package.

Figure 1 – Prospect locations in relation to the Apollo Hill Mineral Resource, Apollo Hill Super-Structure and Keith-Kilkenny Shear

Saturn Managing Director, Ian Bamborough said: 'These additional positive drill results are providing important vectors for ongoing exploration at these four sizable gold Prospects. I look forward to the next round of drilling which will a) follow up on some very strong intersections, and b) target new areas on our land package based on an ever-refining geological interpretation. The latest results continue to support our view that Saturn's extensive land holding has the potential to host additional significant gold deposits in complement to our 1.47Moz Apollo Hill Mineral Resource'.

Bob's Prospect

Extensional RC drilling has continued to build on the understating understanding of the mineralisation along Bob's 3.5km strike length with higher gold vectors remaining open for additional drill targeting (long-section in Figure 2).

Figure 3 shows a cross section of the Bob's Prospect highlighting the improvement in continuity of the mineralisation.

Hercules

Results from AC drilling at Hercules have increased the strike length of mineralisation in both north and south directions. The system is now over 3km long. A significant gold trend is displayed in Figure 4 as gold gram metre (gold grade in g/t x interval downhole width) contours. Drilling is still widely spaced, particularly around better results (20m @ 2.27g/t Au from 24m - AHAC0925) where high priority follow up AC drilling is planned; (planned drilling areas also shown on Figure 4).

In addition, two RC holes have been completed under significant AC intersections at Hercules. Results have been returned for AHRC0837 (4m @ 4.57g/t Au from 54m) in fresh rock indicating that mineralisation is present and open at depth.

Aquarius

Figures 5 and 6 show cross-sections of AC results at Aquarius. Several promising intersections are now forming zones of coherent mineralisation hidden under cover at this prospect. Infill AC drilling and deeper RC drilling are planned to follow up on promising intersections at this emerging gold system which is now over 2km in strike length (Figure 1).

Artemis

Follow up drilling along strike of hole AHAC0672 (**4m @ 4.08g/t Au** from 40m within **33m @ 0.73g/t Au** from 24m) has delineated a mineralised trend which is now over 800m in strike length. Importantly, drilling along the Artemis gold system, which lies 10km directly along trend from the Apollo Hill Mineral Resource is still widely spaced and further infill and extensional AC drilling is planned to target some now obvious gaps in the drilling (Figure 7).

Appendix 1 lists all significant results from this phase of drilling including significant intersections from reconnaissance drilling at other areas on the Apollo Hill land package. Appendix 2 lists reported hole details.

This announcement has been approved for release by the Saturn Metals Limited Board of Directors.

IAN BAMBOROUGH Managing Director

For further information please contact: Ian Bamborough Managing Director Saturn Metals Limited +61 (0)8 6234 1114 info@saturnmetals.com.au

Figure 2 – Simplified geological long-cross section A-A' of Bob's Prospect – higher grade gold vectors apparent open for further drill testing

Figure 3 – Southeast-northwest cross-section B-B' of recent drilling results at Bob's – mineralisation trends improving

Figure 5 – north-south cross-section A-A' of recent drilling results at Aquarius – Mineralised blanket present with multiple discrete zones of mineralisation identified – drilling planned to target beneath the anomaly

Figure 6 – East-west cross-section B-B' of recent drilling results at Aquarius – Mineralised blanket present with multiple discrete zones of mineralisation identified – drilling planned to target beneath the anomaly.

Competent Persons Statement – Resource:

¹The information for the Mineral Resource included in this report is extracted from the report entitled (Apollo Hill Gold Resource Upgraded To 1.47Moz) created on 2 May 2022 and is available to view on the Saturn Metals Limited website. Saturn Metals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Saturn Metals Ltd confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

 Table 1 (a). May 2022 Mineral Resource Statement; 0.23 g/t Au cut-off by oxidation domain within a 1.2 revenue factor pit shell to represent reasonable prospects for eventual economic extraction.

Lower Cut-off Grade Au g/t	Oxidation state	Measured		Indicated		Inferred			MII Total				
		Tonnes	Au	Au Metal	Tonnes	Au	Au Metal	Tonnes	Au	Au Metal	Tonnes	Au	Au Metal
		(Mtonnes)	(g/t)	(KOzs)	(Mtonnes)	(g/t)	(KOzs)	(Mtonnes)	(g/t)	(KOzs)	(Mtonnes)	(g/t)	(KOzs)
	Oxide	0	0	0	1.08	0.54	19	0.75	0.61	15	1.8	0.57	34
0.22	Transitional	0	0	0	8.3	0.58	155	3.1	0.61	61	11	0.59	216
0.23	Fresh	0	0	0	31	0.58	586	32	0.62	634	63	0.60	1,220
	Total	0	0	0	41	0.58	760	35	0.62	710	76	0.60	1,469

The model is reported above the 2022 nominal RF1.2 pit optimization shell (AH8A_2 MII HL) for RPEEE and 0.23 g/t Au lower cut-off grade for all material types. There is no known depletion by mining within the model area. Estimation is by LMIK for Apollo Hill ZONECODE=100 and 300 while Ra ZONECODE=200 and Tefnut (ZONECODE=400, 402) were estimated using ROK due to limited data. Grade field AU_FIN1. The model currently assumes a 5mE x 12.5mN x 5mRL SMU for selective open pit mining. Selectivity may vary with changed mining and processing scenarios. The final models are SMU models and incorporate internal dilution to the scale of the SMU. The models do not account for mining related edge dilution and ore loss. These parameters should be considered during the mining study as being dependent on grade control, equipment and mining configurations including drilling and blasting. Classification is according to JORC Code Mineral Resource categories. Totals may vary due to rounded figures.

Competent Persons Statement – Exploration:

The information in this report that relates to exploration targets and exploration results is based on information compiled by Ian Bamborough, a Competent Person who is a Member of The Australian Institute of Geoscientists. Ian Bamborough is a fulltime employee and Director of the Company, in addition to being a shareholder in the Company. Ian Bamborough has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ian Bamborough consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

^a This document contains exploration results and historic exploration results as originally reported in fuller context in Saturn Metals Limited ASX Announcements, Quarterly Reports and Prospectus - as published on the Company's website. Saturn Metals Limited confirms that it is not aware of any new information or data that materially affects the information on results noted. Announcement dates referred to include but are not limited to: 27/01/2022, 28/01/2022, 31/03/2022, 26/04/2022, 19/05/2022.

Appendix 1:

Significant Regional Exploration AC Drill Results

Hole Number	Down Hole Width (m)	Grade	From	Prospect
AHAC0732	9	0.34	52	Aquarius
AHAC0733	8	0.12	76	Aquarius
AHAC0734	11	0.19	76	Aquarius
AHAC0735	4	0.36	68	Aquarius
AHAC0736	4	0.35	76	Aquarius
AHAC0741	8	0.43	56	Aquarius
incl.	3	1.06	60	Aquarius
444.00742	8	0.11	20	Aquarius
ANACU743	7	0.39	76	Aquarius
incl.	1	1.08	82	Aquarius
AHAC0746	12	0.63	68	Aquarius
incl.	4	1.26	72	Aquarius
4114 00740	4	0.11	24	Aquarius
AHAC0748	8	0.08	72	Aquarius
4114.00740	12	0.04	20	Aquarius
AHAC0749	8	0.06	60	Aquarius
4114.00750	12	0.12	16	Aquarius
AHAC0750	12	0.06	52	Aquarius
4114.00750	8	0.08	20	Aquarius
AHAC0752	8	0.13	52	Aquarius
AHAC0753	4	0.24	8	Aquarius
AUAC0756	8	0.13	16	Aquarius
AHACU750	3	0.22	60	Aquarius
AHAC0759	4	0.14	20	Aquarius
AHAC0760	4	0.11	48	Aquarius
AHAC0761	6	0.16	60	Aquarius
AHAC0763	9	0.69	64	Aquarius
incl.	4	1.86	64	Aquarius
AHAC0765	8	0.08	36	Aquarius
AIIA00703	1	0.05	45	Aquarius
AHAC0768	6	0.13	44	Aquarius
AHAC0769	4	0.48	32	Aquarius
AIIA00703	4	0.43	44	Aquarius
AHAC0770	4	0.92	52	Aquarius
AHAC0772	1	0.18	57	Aquarius
AHAC0773	11	0.30	48	Aquarius
incl.	4	0.62	48	Aquarius
AHAC0774	8	0.35	36	Hermes
	4	0.49	36	Hermes
AHAC0779	4	0.47	96	Hermes
AHAC0783	4	1.22	24	Hermes
AHAC0787	4	0.17	40	Hermes
AHAC0794	4	0.22	60	Hermes

Hole Number	Down Hole Width (m)	Grade	From	Prospect
	4	0.13	72	Hermes
AHAC0799	4	0.11	56	Hermes
	4	0.19	56	Hermes
AHAC0800	8	0.05	72	Hermes
AHAC0802	4	0.16	80	Hermes
AHAC0872	4	0.55	44	Calypso
AHAC0875	7	0.14	28	Calypso
AHAC0808	9	0.12	20	Aphrodite
incl.	2	0.16	28	Aphrodite
AHAC0880	4	0.49	40	Artemis
	4	0.53	60	Artemis
AHAC0883	12	0.06	48	Artemis
AHAC0889	4	0.11	44	Artemis
AHAC0894	4	0.12	44	Artemis
	4	0.18	56	Artemis
	4	0.11	68	Artemis
AHAC0920	8	0.25	36	Artemis
incl.	4	0.36	40	Artemis
AHAC0939	11	0.07	24	Hercules
	8	0.18	24	Hercules
	8	0.07	36	Hercules
AHAC0941	2	0.78	60	Hercules
AHAC0946	4	0.23	44	Hercules
AHAC0947	19	0.11	36	Hercules
AHAC0948	8	0.11	40	Hercules
	2	0.25	64	Hercules
AHAC0956	4	0.63	44	Hercules
AHAC0958	8	0.08	56	Hercules
AHAC0959	4	0.15	56	Hercules
AHAC0960	16	0.11	64	Hercules
	4	0.20	76	Hercules
AHAC0962	4	0.10	52	Hercules
///////////////////////////////////////	8	0.06	64	Hercules
AHAC0967	4	0.10	52	Hercules
	4	0.12	80	Hercules
AHAC0987	4	0.10	52	Hercules
AHAC0997	8	0.12	0	Hercules
AllAction	20	0.57	24	Hercules
incl.	4	1.44	40	Hercules
AHAC0998	12	0.26	20	Hercules
AHAC1000	4	0.39	8	Hercules
AHAC1004	4	0.22	76	Hercules
AHAC1005	8	0.54	60	Hercules
AHAC1006	4	1.97	64	Hercules
AHAC1007	4	0.51	36	Hercules
AHAC1015	8	0.12	56	Hermes
AHAC1016	4	0.31	0	Hermes

Hole Number	Down Hole Width (m)	Grade	From	Prospect
	4	0.58	24	Hermes
AHAC1050	7	0.40	88	Aquarius
AHAC1047	16	0.04 72		Aquarius
AHAC0145	9	0.08	76	Aquarius
AHAC1041	4	0.13	60	Aquarius
	4	0.11	28	Hercules
ALIAC 1054	7	0.22	52	Hercules
AHAC1055	8	0.51	64	Hercules
incl.	4	0.96	64	Hercules
AHAC1060	8	0.13	28	Hercules
incl.	4	0.20	28	Hercules

Significant Regional Exploration RC Drill Results

Hole Number	Down Hole Width (m)	Grade	From	Prospect	
	4	0.68	216	Bob's	
AHRC0829	1	1.86	217	Bob's	
	1	1.55	235	Bob's	
	1	0.44	141	Bob's	
ARCU030	3	1.84	223	Bob's	
incl.	1	4.18	224	Bob's	
AHRC0832	4	1.58	187	Bob's	
	3	3.41	215	Bob's	
AHRC0833	2	0.47	247	Bob's	
	1	0.47	72	Bob's	
ARC0034	10	2.96	126	Bob's	
incl.	8	3.62	127	Bob's	
	1	0.73	139	Bob's	
	2	1.45	176	Bob's	
	1	0.85	100	Bob's	
AHRC0835	5	0.45	195	Bob's	
	4	0.85	237	Bob's	
AHRC0836	4	4.57	54	Hercules	
Incl.	1	15.60	55	Hercules	

Appendix 2:

Completed and Reported AC Holes

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL (m)	Dip°	Azi°	Depth (m)
AHAC0728	399553	6755451	357	-90	0	57
AHAC0729	399452	6755454	355	-90	0	93
AHAC0730	399456	6755350	368	-90	0	75
AHAC0731	399554	6755351	347	-90	0	59
AHAC0732	399650	6755357	360	-90	0	62
AHAC0733	399353	6755551	352	-90	0	93
AHAC0734	399448	6755555	343	-90	0	88
AHAC0735	399552	6755548	365	-90	0	75
AHAC0736	399652	6755545	355	-90	0	84
AHAC0737	399452	6755257	354	-90	0	98
AHAC0738	399546	6755257	352	-90	0	69
AHAC0739	399450	6755151	347	-90	0	71
AHAC0740	399548	6755158	330	-90	0	69
AHAC0741	399646	6755163	357	-90	0	64
AHAC0742	399553	6755052	358	-90	0	82
AHAC0743	399650	6755055	346	-90	0	83
AHAC0744	399351	6755651	355	-90	0	111
AHAC0745	399451	6755649	354	-90	0	84
AHAC0746	399554	6755651	350	-90	0	80
AHAC0747	399623	6754975	352	-90	0	106
AHAC0748	399354	6755752	361	-90	0	87
AHAC0749	399453	6755748	355	-90	0	73
AHAC0750	399349	6755850	349	-90	0	77
AHAC0751	399446	6755851	355	-90	0	64
AHAC0752	399538	6755847	343	-90	0	60
AHAC0753	399633	6755843	338	-90	0	89
AHAC0754	399347	6755957	352	-90	0	61
AHAC0755	399449	6755956	353	-90	0	64
AHAC0756	399546	6755953	354	-90	0	63
AHAC0757	399349	6756050	347	-90	0	72
AHAC0758	399461	6756045	350	-90	0	36
AHAC0759	399461	6756045	350	-90	0	46
AHAC0760	399149	6756152	352	-90	0	55
AHAC0761	399254	6756155	356	-90	0	66
AHAC0762	399351	6756155	355	-90	0	67
AHAC0763	399154	6756251	353	-90	0	73
AHAC0764	399450	6756148	350	-90	0	61
AHAC0765	399548	6756161	360	-90	0	46
AHAC0766	399250	6756254	352	-90	0	71
AHAC0767	399350	6756254	353	-90	0	21
AHAC0768	399449	6756256	353	-90	0	51
AHAC0769	399549	6756259	353	-90	0	51
AHAC0770	399250	6756350	352	-90	0	61

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL (m)	Dip°	Azi°	Depth (m)
AHAC0771	399350	6756351	352	-90	0	60
AHAC0772	399451	6756352	352	-90	0	58
AHAC0773	399551	6756357	357	-90	0	59
AHAC0774	385101	6741602	352	-90	0	58
AHAC0775	385299	6741602	363	-90	0	27
AHAC0776	385498	6741604	357	-90	0	21
AHAC0777	385702	6741601	360	-90	0	62
AHAC0778	385900	6741599	365	-90	0	80
AHAC0779	386099	6741598	367	-90	0	115
AHAC0780	386295	6741603	356	-90	0	76
AHAC0781	386533	6741665	350	-90	0	75
AHAC0782	386695	6741599	352	-90	0	46
AHAC0783	386894	6741603	353	-90	0	65
AHAC0784	384902	6742752	356	-90	0	48
AHAC0785	385104	6742749	360	-90	0	62
AHAC0786	385303	6742748	360	-90	0	68
AHAC0787	385499	6742748	358	-90	0	83
AHAC0788	385698	6743006	356	-90	0	84
AHAC0789	385896	6743001	357	-90	0	58
AHAC0790	386100	6743011	360	-90	0	62
AHAC0791	386296	6742997	346	-90	0	61
AHAC0792	383646	6741001	350	-60	270	16
AHAC0793	383848	6741006	372	-60	270	54
AHAC0794	383755	6741001	372	-60	270	87
AHAC0795	384040	6739550	370	-60	225	37
AHAC0796	384251	6739550	367	-60	225	34
AHAC0797	384300	6739551	370	-60	225	48
AHAC0798	384347	6739553	370	-60	225	66
AHAC0799	384547	6739555	370	-60	225	67
AHAC0800	384743	6739552	360	-60	225	87
AHAC0801	384746	6739303	366	-60	225	101
AHAC0802	384546	6739297	370	-60	225	93
AHAC0803	384498	6739299	372	-60	225	94
AHAC0804	384447	6739299	368	-60	225	56
AHAC0805	384248	6739303	376	-60	225	81
AHAC0806	384053	6739306	379	-60	225	38
AHAC0807	379100	6758652	362	-60	270	24
AHAC0808	379198	6758653	387	-60	270	30
AHAC0809	379297	6758653	315	-60	270	33
AHAC0810	379101	6758599	332	-60	270	18
AHAC0811	379303	6758601	359	-60	270	23
AHAC0812	379199	6758603	348	-60	270	19
AHAC0813	379101	6758504	366	-60	270	20
AHAC0814	379201	6758501	368	-60	270	29
AHAC0815	379297	6758497	367	-60	270	19
AHAC0816	379399	6758500	370	-60	270	17

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL (m)	Dip°	Azi°	Depth (m)
AHAC0817	379499	6758500	366	-60	270	12
AHAC0818	379600	6758499	365	-60	270	20
AHAC0838	387596	6759399	350	-90	0	77
AHAC0872	373729	6776363	350	-60	225	104
AHAC0873	373870	6776504	350	-60	225	91
AHAC0874	373940	6776575	350	-60	225	51
AHAC0875	374011	6776646	350	-60	225	41
AHAC0876	374082	6776717	350	-60	225	43
AHAC0877	374152	6776787	350	-60	225	65
AHAC0878	373799	6776433	350	-60	225	99
AHAC0879	362855	6785284	350	-60	270	42
AHAC0880	369954	6785276	350	-60	270	70
AHAC0881	362406	6785672	350	-60	270	24
AHAC0882	362499	6785674	350	-60	270	32
AHAC0883	362600	6785668	350	-60	270	63
AHAC0884	362702	6785673	350	-60	270	29
AHAC0885	362799	6785676	350	-60	270	40
AHAC0886	362601	6785470	350	-60	270	32
AHAC0887	362705	6785477	350	-60	270	33
AHAC0888	362803	6785462	350	-60	270	29
AHAC0889	362902	6785476	350	-60	270	64
AHAC0890	362997	6785469	342	-60	270	64
AHAC0891	361900	6786075	350	-60	270	10
AHAC0892	362300	6786075	350	-60	270	45
AHAC0893	362400	6786075	350	-60	270	50
AHAC0894	362500	6786075	350	-60	270	69
AHAC0895	362700	6786075	350	-60	270	62
AHAC0896	363100	6786075	350	-60	270	17
AHAC0897	363500	6786075	350	-60	270	48
AHAC0898	363900	6786075	350	-60	270	75
AHAC0899	364300	6786075	350	-60	270	106
AHAC0900	364700	6786075	350	-60	270	121
AHAC0901	365100	6786075	350	-60	270	102
AHAC0902	360600	6787675	350	-60	270	85
AHAC0903	360900	6787675	350	-60	270	42
AHAC0904	361000	6787675	350	-60	270	40
AHAC0905	361400	6787675	350	-60	270	20
AHAC0906	361800	6787675	350	-60	270	55
AHAC0907	362000	6787675	350	-60	270	25
AHAC0908	362200	6787675	350	-60	270	43
AHAC0909	362600	6787675	350	-60	270	98
AHAC0910	363000	6787675	350	-60	270	106
AHAC0911	363410	6787677	350	-60	270	111
AHAC0912	363805	6787677	350	-60	270	112
AHAC0913	363050	6784875	350	-60	270	83
AHAC0914	363150	6784875	350	-60	270	90

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL Dip ^o		Azi°	Depth (m)
AHAC0915	363250	6784875	350	-60	270	92
AHAC0916	363350	6784875	350	-60	270	92
AHAC0917	363450	6784875	350	-60	270	84
AHAC0918	362800	6785075	350	-60	270	36
AHAC0919	362900	6785075	350	-60	270	48
AHAC0920	363000	6785075	350	-60	270	49
AHAC0921	363100	6785075	350	-60	270	67
AHAC0922	363200	6785075	350	-60	270	76
AHAC0936	385200	6761451	349	-60	225	80
AHAC0937	385245	6761450	339	-60	225	53
AHAC0938	384748	6761646	343	-60	225	47
AHAC0939	384801	6761648	346	-60	225	36
AHAC0940	384852	6761651	367	-60	225	53
AHAC0941	384896	6761641	343	-60	225	63
AHAC0942	384951	6761651	350	-60	225	80
AHAC0943	384998	6761650	350	-60	225	64
AHAC0944	385046	6761649	350	-60	225	67
AHAC0945	385097	6761648	350	-60	225	54
AHAC0946	384597	6761853	350	-60	225	56
AHAC0947	384648	6761851	350	-60	225	67
AHAC0948	384698	6761848	352	-60	225	31
AHAC0949	384741	6761854	334	-60	225	48
AHAC0950	384799	6761851	347	-60	225	61
AHAC0951	384848	6761751	347	-60	225	61
AHAC0952	384895	6761856	346	-60	225	43
AHAC0953	384947	6761854	343	-60	225	62
AHAC0954	384997	6761849	345	-60	225	79
AHAC0955	385099	6761849	346	-60	225	57
AHAC0956	385197	6761849	341	-60	225	81
AHAC0957	385298	6761849	355	-60	225	93
AHAC0958	384400	6762053	352	-60	225	89
AHAC0959	384455	6762053	355	-60	225	83
AHAC0960	384497	6762049	350	-60	225	81
AHAC0961	384550	6762052	355	-60	225	85
AHAC0962	384598	6762046	351	-60	225	83
AHAC0963	384647	6762047	350	-60	225	73
AHAC0964	384698	6762052	350	-60	225	61
AHAC0965	384749	6762049	345	-60	225	73
AHAC0966	385501	6760596	348	-60	225	94
AHAC0967	385696	6760595	345	-60	225	90
AHAC0968	386805	6758400	346	-60	225	85
AHAC0969	385700	6759400	344	-60	225	74
AHAC0970	385899	6759408	347	-60	225	42
AHAC0971	386098	6759402	345	-60	225	63
AHAC0972	386288	6759411	351	-60	225	89
AHAC0973	386494	6759401	351	-60	225	89

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL Dip°		Azi°	Depth (m)
AHAC0974	386734	6759393	352	-60	225	101
AHAC0975	386929	6759397	347	-60	225	109
AHAC0976	387092	6759404	351	-60	225	109
AHAC0977	385706	6759598	355	-60	225	64
AHAC0978	385808	6759603	347	-60	225	65
AHAC0979	385902	6759599	346	-60	225	43
AHAC0980	386005	6759599	353	-60	225	58
AHAC0981	386103	6759596	346	-60	225	59
AHAC0982	386198	6759597	350	-60	225	76
AHAC0983	386298	6759613	364	-60	225	54
AHAC0984	386409	6759610	353	-60	225	51
AHAC0985	386502	6759599	348	-60	225	46
AHAC0986	386584	6759603	350	-60	225	48
AHAC0987	385699	6759803	349	-60	225	72
AHAC0988	385803	6759801	361	-60	225	76
AHAC0989	385899	6759801	357	-60	225	75
AHAC0990	385999	6759798	360	-60	225	83
AHAC0991	386102	6759799	354	-60	225	89
AHAC0992	386200	6759800	346	-60	225	85
AHAC0993	386300	6759798	346	-60	225	64
AHAC0994	386399	6759798	344	-60	225	51
AHAC0995	386393	6760001	346	-60	225	82
AHAC0996	385123	6761198	350	-60	225	58
AHAC0997	385179	6761204	350	-60	225	46
AHAC0998	385225	6761200	350	-60	225	56
AHAC0999	385276	6761199	350	-60	225	42
AHAC1000	385326	6761198	350	-60	225	75
AHAC1001	385377	6761194	350	-60	225	25
AHAC1002	385423	6761200	350	-60	225	30
AHAC1003	385402	6760401	348	-60	225	105
AHAC1004	385503	6760391	343	-60	225	98
AHAC1005	385601	6760391	347	-60	225	108
AHAC1006	385698	6760393	347	-60	225	105
AHAC1007	385805	6760393	347	-60	225	105
AHAC1008	385906	6760403	346	-60	225	112
AHAC1009	386003	6760393	350	-60	225	106
AHAC1010	386101	670398	350	-60	225	120
AHAC1011	389205	6736503	350	-60	225	46
AHAC1012	389406	6736509	350	-60	225	4
AHAC1013	389605	6736509	350	-60	225	10
AHAC1014	389005	6736307	350	-60	225	70
AHAC1015	389197	6736300	350	-60	225	65
AHAC1016	389399	6736301	350	-60	225	44
AHAC1017	389596	6736305	350	-60	225	23
AHAC1018	389293	6736519	350	-60	225	12
AHAC1019	389509	6736511	350	-60	225	10

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL (m)	Dip°	Azi°	Depth (m)
AHAC1020	389284	6736297	350	-60	225	86
AHAC1021	389489	6736315	350	-60	225	38
AHAC1026	385911	6760605	350	-60	225	112
AHAC1022	385704	6760193	350	-60	225	110
AHAC1023	385900	6760203	350	-60	225	97
AHAC1024	386105	6760200	350	-60	225	84
AHAC1025	386293	6760203	350	-60	225	75
AHAC1027	385002	6761348	350	-60	225	78
AHAC1028	385047	6761351	350	-60	225	61
AHAC1029	385099	6761350	350	-60	225	70
AHAC1030	385149	6761344	350	-60	225	68
AHAC1031	385197	6761352	350	-60	225	49
AHAC1032	385246	6761349	350	-60	225	55
AHAC1033	385297	6761351	350	-60	225	38
AHAC1034	385704	6760007	350	-60	225	69
AHAC1035	385792	6760002	350	-60	225	72
AHAC1036	385900	6760001	350	-60	225	82
AHAC1037	385998	6759999	350	-60	225	70
AHAC1038	386092	6760038	350	-60	225	74
AHAC1039	386197	6760002	350	-60	225	60
AHAC1040	386302	6759998	352	-60	225	80
AHAC1049	399250	6754844	352	-60	225	60
AHAC1050	399344	6754844	352	-60	225	96
AHAC1051	399450	6754850	350	-60	225	129
AHAC1052	399550	6754850	350	-60	225	105
AHAC1046	399448	6754648	351	-60	225	87
AHAC1047	399554	6754649	347	-60	225	97
AHAC1048	399674	6756451	356	-60	225	90
AHAC0144	399449	6754448	358	-60	225	80
AHAC0145	399554	6754448	347	-60	225	86
AHAC1041	399441	6754250	352	-60	225	84
AHAC1042	399555	6754248	346	-60	225	81
AHAC1043	399649	6754249	349	-60	225	66
AHAC1053	384850	6761550	350	-60	225	48
AHAC1054	384900	6761550	350	-60	225	60
AHAC1055	384950	6761550	350	-60	225	76
AHAC1056	385000	6761550	350	-60	225	64
AHAC1057	385050	6761550	350	-60	225	71
AHAC1058	385100	6761550	350	-60	225	91
AHAC1059	385150	6761550	350	-60	225	71
AHAC1060	384700	6761750	350	-60	225	57

Completed and Reported RC Holes

Hole Number	Easting GDA94-Z51	Northing GDA94-Z51	RL (m)	Dip°	Azi°	Depth (m)	Prospect
AHRC0828	379790	6772557	350	-60	270	316	Bob's
AHRC0829	379791	6772660	350	-55	270	270	Bob's
AHRC0830	379468	6773349	373	-60	225	244	Bob's
AHRC0831	370650	6774914	345	-60	225	174	Bob's
AHRC0832	379028	6774321	356	-60	225	295	Bob's
AHRC0833	379002	6774416	357	-60	225	265	Bob's
AHRC0834	378642	6774791	356	-60	225	235	Bob's
AHRC0835	378628	6774896	356	-60	225	253	Bob's
AHRC0836	385422	6761022	350.	-60	225	151	Hercules
AHRC0837*	385359	6761234	350	-60	225	205	Hercules

* Holes for which assays remain pending.

Appendix 3:

Saturn Metals Project Areas

Apollo Hill (29.15°S and 121.68°E) is located approximately 60km south-east of Leonora in the heart of WA's goldfields region (Figure 8). The deposit and the Apollo Hill project are 100% owned by Saturn and are surrounded by good infrastructure and several significant gold deposits. The Apollo Hill Project has the potential to become a large tonnage, simple metallurgy, low strip open pit mining operation.

Figure 8 – Apollo Hill location, Saturn Metals' tenements and surrounding gold deposits, gold endowment and infrastructure.

In addition, Saturn has a second quality gold exploration project in Australia. The Company has an option to earn an 85% joint venture interest in the West Wyalong Project (Figure 9), which represents a high-grade vein opportunity on the highly gold prospective Gilmore suture within the famous Lachlan Fold belt of NSW.

Figure 9 – Regional setting and location of the West Wyalong Gold Project in relation to other gold projects in New South Wales and Victoria (map taken from Saturn ASX announcement on 28 April 2020 where full references are provided).

Appendix 4:

JORC Code, 2012 Edition – Table 1 – Apollo Hill Exploration Area

Section 1 Sampling Techniques and Data

(Criteria in this section apply to the Apollo Hill, Apollo Hill Regional, Apollo Hill Hanging-wall and Ra and Tefnut exploration areas all succeeding sections).

Table II Extract of JORC Code 2012 Table 1

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (e.g. submarine nodules) may warrant disclosure of detailed information.	Measures taken to ensure the representivity of RC and AC sampling include close supervision by geologists, use of appropriate sub-sampling methods, routine cleaning of splitters and cyclones, and AC/RC rigs with sufficient capacity to provide generally dry, reasonable recovery samples. Information available to demonstrate sample representivity includes AC/RC sample weights, sample recovery, sample consistency, field duplicates, standards and blanks. AC holes were sampled over 4m intervals using a cone-splitter mounted to the AC drill rig. RC holes were sampled over 1m intervals using a cone-splitter mounted to the RC drill rig. AC/RC samples were analyzed by ALS in both Kalgoorlie and Perth and SGS in Kalgoorlie. At the laboratories, the samples were oven dried and crushed to 90% passing 2 mm, and pulverized to 95% passing 106 microns, with analysis by 50 g fire assay. AC/RC samples were generally taken at 1 m interval but if composited were composited to 4 m to produce a 3 kg representative sample to be submitted to the laboratory. If the 4 m composite samples were retrieved and submitted to the laboratory. In general, the expected mineralized zones are all sampled using 1 m intervals. Diamond core was drilled HQ3 and NQ2 dependent on weathering profile and ground conditions. The core was cut in half using a Corewise diamond saw at the ALS laboratory in Perth, where both half and full core were submitted for analysis. Half and full core samples were taken with a diamond saw, generally on 1 m intervals, dependent on weathering profile and QAQC procedures in line with industry best practice, which includes the submission of standards, blanks. Duplicates were taken at regular intervals within each submission for RC and Diamond samples.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Standard AC diameters and bits were used. Reverse Circulation drilling used either a 4.5 inch or 5.5 inch face-sampling bit. Diamond core was HQ3 of NQ2 diameter core. All RC drillholes were surveyed by Gyro, every 30 m down hole. All core was oriented using a Reflex orientation tool, which was recorded at the drill site, and all core pieced back together and orientated at the STN core yard at Apollo Hill.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC sample recovery was visually estimated by volume for each 1 m bulk sample bag and recorded digitally in the sample database. Very little variation was observed. Measures taken to maximize recovery for AC/RC drilling included use of face sampling bits and drilling rigs of sufficient capacity to provide generally dry, high

Criteria	JORC Code Explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred	recovery samples. RC sample weights indicate an average recovery of 85% to 95% and were dry.
	due to preferential loss/gain of fine/coarse material.	The cone splitter was regularly cleaned with compressed air at the completion of each rod.
		The RC Drilling was completed using auxiliary compressors and boosters to keep the hole dry and ensure the sample was lifted to the sampling equipment as efficiently as possible. The cyclone and cone splitter were kept dry and clean, with the cyclone cleaned after each drillhole and the splitter cleaned after each rod to minimize down-hole or cross-hole contamination. The 3 kg calico bag samples representing 1 m were taken
		directly from the cyclone and packaged for freight to Kalgoorlie. The calico represents both fine and coarse material from the drill rig.
		Diamond core recovery was measured and recorded for each drill run. The core was physically measured by tape and recorded for each run. Core recovery was recorded as percentage recovered. All data was loaded into the STN database.
		Diamond drilling utilized drilling additives and muds to ensure the hole was conditioned to maximize recoveries and sample quality.
		There was no observable relationship between recovery and grade, or preferential bias between hole-types observed at this stage.
		There was no significant loss of core reported in the mineralized parts of the diamond drillholes to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drillholes were geologically logged by industry standard methods, including depth, colour, lithology, alteration, sulphide and visible gold mineralization and weathering.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	AC bottom of holes or interesting geology chip trays are retained.
	The total length and percentage of the relevant intersections logged.	RC Chip trays and Diamond Core trays were photographed.
		The logging is qualitative in nature and of sufficient detail to support the current interpretation.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	AC holes are generally sampled with 4m composites and 1m bottom of hole samples. RC holes were sampled over 1 m intervals by cone-splitting. RC sampling was closely supervised by field geologists and included appropriate sampling methods, routine cleaning of splitters and cyclones, and rigs with sufficient capacity to provide generally dry, high recovery RC samples. Sample quality monitoring included weighing RC samples and field duplicates.
	representative of the in-situ material collected, including for instance results for field duplicate/second-half	Whole core was sent for assay in logged mineralized zones. Half core was submitted in unmineralized surrounding country rock.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Assay samples were crushed to 90% passing 2 mm, and pulverized to 95% passing 75 microns, with fire assay of 50 g sub-samples. Assay quality monitoring included reference standards and inter-laboratory checks assays.
		Duplicate RC and core samples were collected every 20 samples, and certified reference material and blank material was inserted every 40 samples of all drilling types.
		The project is at an early stage of evaluation and the suitability of sub-sampling methods and sub-sample sizes for all sampling groups has not been comprehensively established. The available data suggests that sampling procedures provide sufficiently representative sub-samples for the current interpretation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model,	Sampling included field duplicates, blind reference standards, field blanks and inter-laboratory checks to confirm assay precision and accuracy with sufficient confidence for the current results, at a rate of 5%.

Criteria	JORC Code Explanation	Commentary
	reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Samples were submitted to ALS in Kalgoorlie and Perth and SGS in Kalgoorlie where they were prepared, processed and analyzed via 50 g charge fire assay.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	No independent geologists were engaged to verify results. STN project geologists were supervised by the Company's Exploration Manager. No adjustments were made to any assays of data.
		Logs were recorded by field geologists on hard copy sampling sheets which were entered into spreadsheets for merging into a central SQL database.
		Laboratory assay files were merged directly into the database. The project geologists routinely validate data when loading into the database.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Collars are initially surveyed by hand-held GPS, utilizing GDA94, Zone 51.
		For resource holes final drillhole collars are all surveyed by DGPS by ABIMS & Goldfield Surveyors.
		All RC and diamond holes were down-hole surveyed using a gyroscopic survey tool.
		A topographic triangulation was generated from drillhole collar surveys and the close-spaced (50 m) aeromagnetic data.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	Apollo Hill mineralization has been tested by generally 30 m spaced traverses of south- westerly inclined drillholes towards 225°. Across strike spacing is variable. Material within approximately 50 m of surface has been generally tested by 2 m to 30 m spaced holes, with deeper drilling ranging from locally 20 m to greater than 6 m spacing.
		Bob's and Hercules has currently been drilled on a 200m-100m line spacing by 100m-50m drill spacing.
		and grade continuity.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Mineralized zones are interpreted to dip at an average of around 30° to 60° towards the northeast. Detailed orientations of all short-scale mineralized features have not yet been confidently established. The majority of the drillholes were inclined at around 60° to the southwest.
Sample security	The measures taken to ensure sample security.	Apollo Hill is in an isolated area, with little access by the general public. STN's field sampling was supervised by STN geologists. Sub-samples selected for assaying were collected in heavy-duty poly-woven bags which were immediately sealed. These bags were delivered to the assay laboratory by independent couriers, STN employees or contractors. Results of field duplicates, blanks and reference
		material, and the general consistency of results between sampling phases provide confidence in the general reliability of the drilling data.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person independently reviewed STN sample quality information and database validity. These reviews included consistency checks within and between database tables and comparison of assay entries with original source records for STN's drilling. These reviews showed no material discrepancies. The Competent Person considers that the Apollo Hill drilling data has been sufficiently verified to provide an adequate basis for the current reporting of exploration results.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section).

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Apollo Hill Project lies within Exploration License E39/1198, M31/486 and M39/296. These tenements are wholly owned by Saturn Metals Limited. These tenements, along with certain other tenure, are the subject of a 5% gross over-riding royalty (payable to HHM) on Apollo Hill gold production exceeding 1 Moz. M39/296 is the subject of a \$1/t royalty (payable to a group of parties) on any production. The tenements are in good standing and no known impediments exist. The Bob's Prospect sits in Apollo Hill Exploration License E39/1984. The Hercules Prospect sits in Apollo Hill Exploration License E31/1163.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	AC, RC and diamond drilling by previous tenement holders provides around 44% of the estimation dataset. The data is primarily from RC and diamond drilling by Battle Mountain, Apex Minerals, Fimiston Mining, Hampton Hill, Homestake, MPI and Peel Mining.
Geology	Deposit type, geological setting and style of mineralization.	The Apollo Hill project comprises two deposits/trends: the main Apollo Hill deposit in the northwest of the project area, and the smaller Ra-Tefnut Deposits in the south. Gold mineralization is associated with quartz veins and carbonate-pyrite alteration along a steeply north-east dipping contact between felsic rocks to the west, and mafic dominated rocks to the east. The combined mineralized zones extend over a strike length of approximately 2.4 km and have been intersected by drilling to approximately 350 m vertical depth. The depth of complete oxidation averages around 4 m with depth to fresh rock averaging around 21 m. Gold mineralisation at Bob's is associated with sheared mafic rocks with quartz veining. Gold mineralisation at Hercules is associated with sheared mafic rocks with quartz veining.
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Any relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices. No information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	For exploration data, no top-cuts have been applied. All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting). No metal equivalent values are used for reporting exploration results.
Relationship between mineralization widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drillhole angle is known, its nature should be reported.	All drillhole intercepts are measured in downhole meters, with true widths estimated to be about 60% of the down-hole width. The orientation of the drilling has the potential introduce some sampling bias (positive or negative).

Criteria	JORC Code Explanation	Commentary
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Refer to Figures and Tables within the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	For any exploration results, all results are reported, no lower cut-off or top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	It is anticipated that further work will include infill and step out drilling and follow up RC drilling. This work will be designed to improve confidence in and test potential extensions to the current resource estimates/Bob's/Hercules mineralisation. AC drilling will continue across the nearby geological terrain.

