

EXCELLENT GOLD INTERCEPTS AT APOLLO HILL

High-grade, thick intercepts demonstrate robust nature of the 2.03Moz Mineral Resource at Apollo Hill and highlight strong growth potential

HIGHLIGHTS

Impressive assay results from recent Resource-focused Reverse Circulation (RC) and Diamond drilling emphasise the quality of Apollo Hill's 2.03Moz Mineral Resource¹. These compelling results have further developed continuity across the deposit's hanging-wall lode systems and highlight the potential for significant Resource growth.

Excellent thick and high-grade results underpin Apollo Hill's amenability to large-scale, low-cost bulk tonnage mining and heap leach processing:

- 16m @ 6.35g/t Au from 56m within 27m @ 4.05g/t Au from 53m AHRC1220
- 6m @ 13.53g/t Au from SURFACE (0m) AHRC1222
- 5m @ 4.10g/t Au from 225m within 14m @ 1.68g/t Au from 218m AHRC1192
- 8m @ 3.70g/t Au from 266m within 61m @ 0.81g/t Au from 233m AHRC1197
- 16m @ 2.28g/t Au from 113m within 166m @ 0.47g/t Au from 101m AHRC1179
- 9m @ 2.79g/t Au from 144m within 23m @ 1.23g/t Au from 130m AHRC1190
- 8m @ 2.06g/t Au from 264m within 24m @ 0.67g/t Au from 264m AHRC1188
- 19m @ 1.17g/t Au from 15m within 49m @ 0.55g/t Au from 15m AHRC1158
- 10m @ 2.04g/t Au from 232m within 30m @ 0.97g/t Au from 220m AHRC1158
- 17m @ 1.66g/t Au from 110m within 94m @ 0.44g/t Au from 52m AHRC1164
- 18m @ 1.20g/t Au from 189m within 40m @ 0.67g/t Au from 180m AHRC1182
- 11m @ 1.90g/t Au from 139m within 27m @ 1.00g/t Au from 139m all within 90m @ 0.42g/t Au from 111m AHRC1175
- 22m @ 1.01g/t Au from 282m within 55m @ 0.54g/t Au from 272m AHRC1194
- 22m @ 1.06g/t Au from 248m within 79m @ 0.45g/t Au from 236m AHRC1196
- 18m @ 1.21g/t Au from 83m AHRC1189

In addition, a significant high-grade extensional intersection has been returned of:

• 7m @ 12.38g/t Au from 187m within 14m @ 6.38g/t Au from 184m – AHRC1174

The results will contribute towards a **second Mineral Resource upgrade** this year and the impending **Pre-Feasibility Study** (PFS) and **maiden Ore Reserve** – all scheduled for the second half of 2025.

¹ Complete details of the Mineral Resource (118.7Mt @ 0.53g/t Au for 2,030,000oz Au) and the associated Competent Persons Statement were published in the ASX Announcement dated 12 February 2025 titled "Apollo Hill Gold Resource Exceeds 2Moz". Saturn reports that it is not aware of any new information or data that materially affects the information included in that Mineral Resource announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and there have been no adverse material changes.

Saturn Metals Limited (ASX: **STN**) ("**Saturn**" or "**the Company**") is pleased to report the latest assay results from ongoing Resource development drilling at its flagship 100%-owned Apollo Hill Heap Leach Gold Project, located near Leonora in Western Australia.

Thick intersections provide strong support for Saturn's bulk mining and heap leach development strategy at Apollo Hill by reinforcing continuity and localised grade opportunities across several wide lode systems.

Reported drill-hole locations and significant results are illustrated in plan view in Figure 1. Figure 2 shows infill intercepts and an extensional intersection (**14m @ 6.38g/t Au** from 184m – AHRC1174) on a simplified cross-section with the Apollo Hill February 2025 Mineral Resource block model as background.

This announcement includes results from 68 drill-holes for 15,523m. All significant assays are reported in Appendix 1 & Appendix 2. Drill-hole details are listed in Appendix 3 & Appendix 4.

These results form a portion of the 266-hole / 50,700-metre program recently drilled at Apollo Hill, which will feed into Saturn's next Mineral Resource update scheduled for delivery in the second half of 2025. Of this program, 57 holes for approximately 7,300m remain to be reported. RC drilling continues at Apollo Hill targeting ongoing Resource growth and conversion.

Saturn's Managing Director Ian Bamborough said:

"The high-grade and thick results returned in this latest batch of assays continues to reinforce the significant endowment of the Apollo Hill gold system, including exciting extensional results that pave the way for future Resource growth at relatively shallow depths.

With Saturn's recent Resource upgrade surpassing the 2Moz mark, and with a backdrop of continuing high gold prices, drilling is ongoing.

These new results will feed into a second consecutive Mineral Resource update for Apollo Hill this year, targeted for delivery early in the second half of 2025, which will in turn underpin our and Pre-Feasibility and maiden Ore Reserve Study which are also scheduled for completion later this year.

We look forward to reporting additional rounds of assays on a regular basis over the coming months."

This announcement has been approved for release by the Saturn Metals Limited Board of Directors.

IAN BAMBOROUGH Managing Director

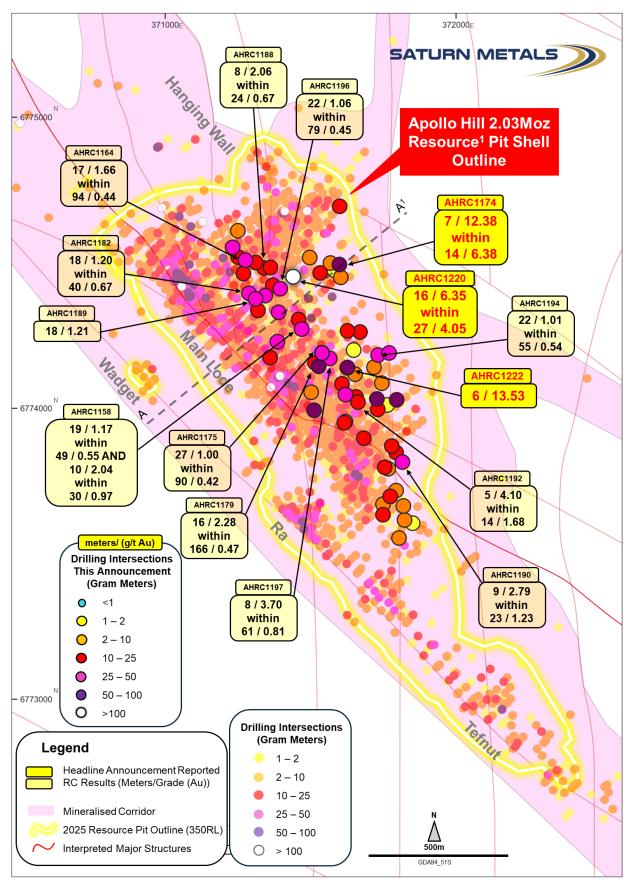


Figure 1 – Plan Overview, Apollo Hill RC Holes. Previously reported holes >1 Gram Metre (g/t Au x Metres) with all holes reported in this announcement illustrated. February 2025 2.03Moz Apollo Hill Mineral Resource¹ Pit Shell Outline seen at 350RL (Average Surface RL); Figure 2 cross-section illustrated as line A-A¹ on this diagram.

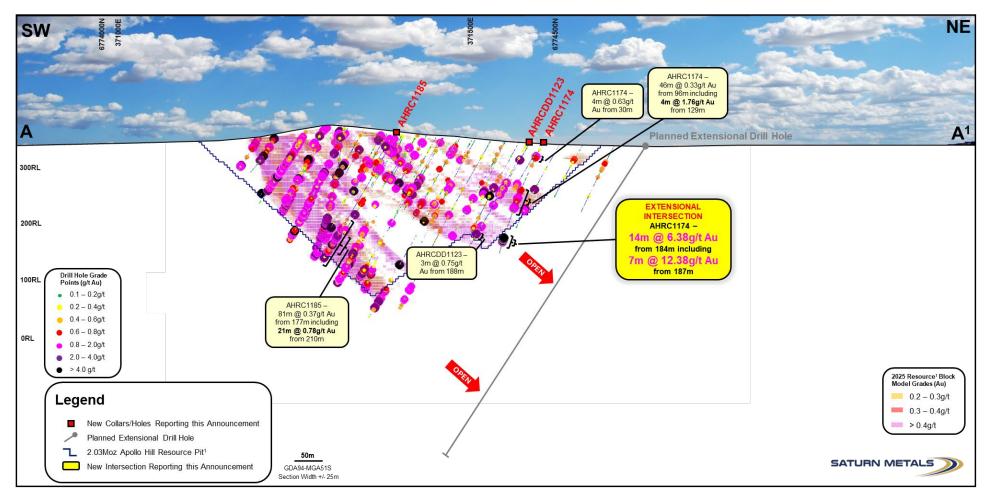


Figure 2 – Simplified geological cross-section showing recent results, Mineral Resource block model as reported within the optimised pit shell and planned extensional drill holes; Section location shown in plan on Figure 1 (A-A¹).

For further information please contact:

Investors & Corporate:

Ian Bamborough Managing Director T: +61 (0)8 6234 1114 E: info@saturnmetals.com.au

Media Inquiries:

Nicholas Read Read Corporate T: +61 (0)8 9388 1474 E: nicholas@readcorporate.com.au

Competent Persons Statement:

The information in this report that relates to exploration results is based on information compiled and/or reviewed by Ian Bamborough, a Competent Person who is a Member of The Australian Institute of Geoscientists. Ian Bamborough is a fulltime employee and Director of the Company, in addition to being a shareholder in the Company. Ian Bamborough has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ian Bamborough consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1:

Significant RC Results Reported in this announcement

Hole	Down Hole	Grade	From
Number	Width (m)	(g/t Au)	(m)
AHRC1147	25	0.44	78
incl	9	0.96	94
	44	0.52	116
incl	9	1.03	116
AHRC1149	3	1.86	85
	5	1.65	155
	17	0.59	183
	39	0.50	313
AHRC1151	9	0.90	257
	24	0.47	313
AHRC1152	6	0.52	106
AHRC1153	12	0.49	144
	7	0.70	205
	10	0.24	242
AHRC1154	41	0.30	74
	85	0.43	223
incl	11	0.95	264
AHRC1155	35	0.30	188
	21	0.37	271
incl	9	0.70	271
AHRC1156	44	0.44	126
incl	10	1.07	160
AHRC1157	22	0.50	176
incl	11	0.87	187
AHRC1158	49	0.55	15
incl	19	1.17	15
incl	3	4.96	15
	31	0.34	107
	52	0.31	158
incl	7	1.11	191
	30	0.97	220
incl	10	2.04	232
AHRC1159	120	0.45	23
incl	19	0.90	124
incl	3	4.05	124

Hole Number	Down Hole Width (m)	Grade (g/t Au)	From (m)
AHRC1160	32	0.38	27
incl	14	0.74	45
	12	0.92	71
	110	0.36	114
incl	19	0.91	168
AHRC1161	24	0.44	66
	6	0.76	130
AHRC1162	23	0.90	236
AHRC1163	126	0.50	216
incl	47	0.86	241
AHRC1164	2	1.45	0
	94	0.44	52
incl	17	1.66	110
AHRC1165	25	0.32	74
AHRC1166	8	0.56	156
	17	0.83	184
AHRC1167	40	0.26	50
incl	12	0.55	50
	59	0.25	107
AHRC1168	15	0.21	88
AHRC1169	5	1.02	42
	57	0.25	121
AHRC1170	70	0.30	181
incl	7	0.90	191
AHRC1171	3	1.82	48
AHRC1172	17	0.65	96
incl	7	1.46	96
AHRC1174	4	0.63	30
	46	0.33	96
incl	4	1.76	129
	14	6.38	184
incl	7	12.38	187
AHRC1175	90	0.42	111
incl	27	1.00	139
incl	11	1.09	111
incl	11	1.90	139
	13	0.63	247

Hole Number	Down Hole Width (m)	Grade (g/t Au)	From (m)
AHRC1176	25	0.33	86
AHRC1177	2	1.08	0
	9	0.65	238
AHRC1178	90	0.44	156
incl	12	1.26	233
	24	0.59	259
incl	5	2.45	271
AHRC1179	166	0.47	101
incl	16	2.28	113
AHRC1180	30	0.43	211
AHRC1181	5	0.90	28
	19	0.86	106
incl	6	2.01	119
	38	0.41	255
incl	7	1.14	255
AHRC1182	10	0.42	14
	77	0.31	59
incl	15	0.80	121
	40	0.67	180
incl	18	1.20	189
AHRC1183	97	0.30	183
AHRC1184	52	0.22	253
incl	7	0.71	270
AHRC1185	81	0.37	177
incl	21	0.78	210
AHRC1187	6	1.49	121
	27	0.44	253
AHRC1188	16	0.72	105
	34	0.67	264
incl	8	2.06	264
AHRC1189	18	1.21	83
	75	0.42	164
incl	15	0.95	194
AHRC1190	23	1.23	130
incl	9	2.79	144
AHRC1191	32	0.49	66
incl	15	0.81	83

Hole Number	Down Hole Width (m)	Grade (g/t Au)	From (m)
AHRC1192	35	0.52	171
incl	5	1.77	201
	14	1.68	218
incl	5	4.10	225
AHRC1194	55	0.54	272
incl	22	1.01	282
AHRC1195	7	0.21	67
AHRC1196	79	0.45	236
incl	22	1.06	248
AHRC1197	28	0.46	131
incl	14	0.73	145
	36	0.37	182
incl	5	1.74	186
	61	0.81	233
incl	8	3.70	266
AHRC1220	27	4.05	53
incl	16	6.35	56
incl	8	9.85	56
AHRC1221	12	1.02	190
AHRC1222	6	13.53	0
AHRC1223	16	2.91	0
incl	10	4.35	0
	9	0.40	225
	2	1.96	274
AHRC1227	114	0.47	200
incl	12	0.82	287
AHRC1240	15	0.43	23
AHRC1241	22	0.47	39
AHRC1242	9	0.63	134
AHRC1243	23	0.48	2
AHRC1244	1	5.66	6
AHRC1245	20	0.31	28
AHRC1246	20	0.33	116
AHRC1247	4	0.30	39

All results reported as interpreted for a bulk mining style heap leach operation – See STN announcement 'Apollo Hill Preliminary Economic Assessment' – August 17th, 2023, for further details.

Appendix 2:

Significant DD Results Reported in this announcement

Hole Number	Down Hole Width (m)	Grade (g/t Au)	From (m)
AHDD0067	44	0.43	27
incl	21	0.69	50
	5	1.03	115
	10	0.51	139
	46	0.49	161
incl	11	0.88	191
AHRCDD0979	79.09	0.52	341
incl	25	1.06	392
AHRCDD1012	4	1.08	348
AHRCDD1013	14	0.52	292
AHRCDD1016	63	0.34	205
incl	5	1.17	206
AHRCDD1111	2.15	0.55	338
AHRCDD1123	3	0.75	188
AHRCDD1133	63	0.32	96
incl	16	0.66	96
	58	0.33	183
incl	7	0.93	224
AHRCDD1139	29	0.24	168
incl	4	0.60	193

All results reported as interpreted for a bulk mining style heap leach operation – See STN announcement 'Apollo Hill Preliminary Economic Assessment' – August 17th, 2023, for further details.

Appendix 3:

Completed and Reported RC Holes

Hole	Easting	Northing	RL	Din	Azi°	Depth
Number	GDA94-Z51	GDA94-Z51	(m)	Dip°	AZI	(m)
AHRC1147	371361	6774174	370	60	225	190
AHRC1149	371670	6774262	351	55	215	394
AHRC1151	371627	6774266	352	61	217	334
AHRC1152	371767	6773792	356	67	222	222
AHRC1153	371718	6774141	351	57	222	370
AHRC1154	371232	6774553	377	68	225	322
AHRC1155	371656	6774039	363	65	225	317
AHRC1156	371600	6774694	362	64	215	255
AHRC1157	371794	6773848	360	63	225	220
AHRC1158	371469	6774272	351	61	220	322
AHRC1159	371512	6773993	362	52	220	208
AHRC1160	371386	6774229	364	61	225	226
AHRC1161	371755	6773797	355	66	217	202
AHRC1162	371459	6774305	355	62	225	352
AHRC1163	371728	6774032	360	64	223	346
AHRC1164	371276	6774509	374	61	220	154
AHRC1165	371620	6773954	358	70	235	100
AHRC1166	371274	6774507	374	61	220	292
AHRC1167	371616	6773950	358	70	235	256
AHRC1168	371497	6774518	358	55	223	202
AHRC1169	371779	6773870	353	63	217	256
AHRC1170	371608	6774084	363	62	225	292
AHRC1171	371604	6774450	353	63	225	240
AHRC1172	371533	6774465	355	65	222	114
AHRC1174	371599	6774494	351	62	221	217
AHRC1175	371539	6774191	355	64	220	288
AHRC1176	371568	6774499	352	60	222	214
AHRC1177	371653	6774117	353	62	225	315
AHRC1178	371620	6774047	364	61	225	306
AHRC1179	371528	6774144	364	61	210	280
AHRC1180	371269	6774463	382	64	222	268
AHRC1181	371340	6774482	377	66	225	310
AHRC1182	371288	6774395	383	58	220	220
AHRC1183	371344	6774387	381	66	215	280
AHRC1184	371362	6774484	381	52	222	334
AHRC1185	371390	6774330	366	62	238	268

Hole	Easting	Northing	RL	Dip°	Azi°	Depth
Number	GDA94-Z51	GDA94-Z51	(m)	ыр	<u>7</u> 21	(m)
AHRC1187	371370	6774423	377	68	229	328
AHRC1188	371311	6774501	374	63	220	304
AHRC1189	371311	6774376	385	64	225	268
AHRC1190	371816	6773815	358	69	222	238
AHRC1191	371683	6773897	358	67	220	250
AHRC1192	371663	6774021	361	62	221	292
AHRC1194	371732	6774183	352	62	225	370
AHRC1195	371763	6774011	356	66	225	130
AHRC1196	371396	6774411	371	59	223	316
AHRC1197	371566	6774171	359	64	215	316
AHRC1220	371440	6774452	369	68	222	220
AHRC1221	371731	6773996	355	64	225	202
AHRC1222	371627	6774140	356	63	225	6
AHRC1223	371626	6774139	360	63	225	322
AHRC1227	371796	6774029	351	54	224	346
AHRC1240	371749	6773670	353	67	220	114
AHRC1241	371774	6773697	352	67	220	144
AHRC1242	371794	6773717	354	67	220	162
AHRC1243	371749	6773634	351	60	225	108
AHRC1244	371804	6773554	352	60	222	114
AHRC1245	371823	6773616	350	60	222	138
AHRC1246	371819	6773664	350	59	222	144
AHRC1247	371851	6773605	349	58	220	156

Appendix 4:

Completed and Reported DD Holes

Hole Number	Easting	Northing	RL	Dip°	Azi°	Depth	DD Tail From
	GDA94- Z51	GDA94- Z51	(m)	ыр	<u> </u>	(m)	(m)
AHDD0067	371319	6774336	370	65	255	250	N/A
AHRCDD0979	371770	6774190	360	68	225	420.09	206
AHRCDD1012	371745	6774086	351	67	225	353	306
AHRCDD1013	371250	6774610	373	62	225	350	276
AHRCDD1016	371251	6774519	373	58	225	280	179
AHRCDD1111	371648	6774200	352	60	217	340	310
AHRCDD1123	371582	6774474	352	61	220	230	158
AHRCDD1133	371515	6774156	355	63	222	245	34
AHRCDD1139	371502	6774055	368	63	221	214	164

Appendix 5:

Saturn Metals Mineral Resources

Mineral Resource Classification	Oxidation	Tonnes (Mt)	Au (g/t)	Au metal (Kozs)
	Oxide	0.2	0.58	3
Measured	Transitional	1.8	0.60	34
	Fresh	2.8	0.53	47
Subtotal		4.7	0.55	85
	Oxide	1.0	0.50	16
Indicated	Transitional	8.3	0.49	131
	Fresh	54.1	0.53	924
Subtotal		63.4	0.53	1,071
	Oxide	0.7	0.49	10
Inferred	Transitional	2.9	0.51	47
	Fresh	47.0	0.54	817
Subtotal		50.6	0.54	874
Grand Total		118.7	0.53	2,030

Complete details of the Mineral Resource (118.7 Mt @ 0.53 g/t Au for 2,030,000 oz Au) and the associated Competent Persons Statement were published in the ASX Announcement dated 12 February 2025 titled "Apollo Hill Gold Resource Exceeds 2Moz". Saturn reports that it is not aware of any new information or data that materially affects the information included in that Mineral Resource announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and there have been no adverse material changes.

Appendix 6:

Saturn Metals Project Areas

Apollo Hill (29.15°S and 121.68°E) is located approximately 60km south-east of Leonora in the heart of WA's goldfields region (Figure 3). The deposit and the Apollo Hill project are 100% owned by Saturn and are surrounded by good infrastructure and several significant gold deposits. The Apollo Hill Project has the potential to become a large tonnage, simple metallurgy, low strip open pit mining operation.

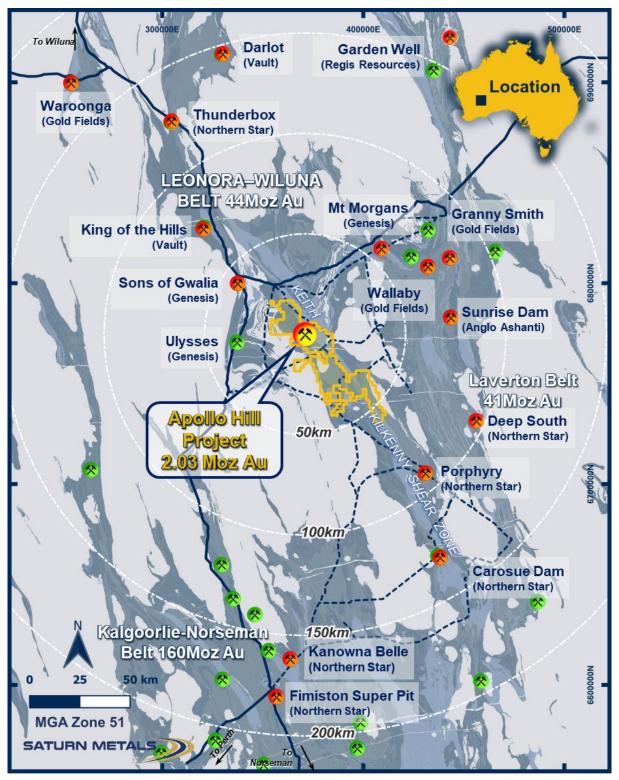


Figure 3 – Apollo Hill location, Saturn Metals' tenements and surrounding gold deposits, gold endowment and infrastructure.

In addition, Saturn has a second quality gold exploration project in Australia. The Company has an option to earn an 85% joint venture interest in the West Wyalong Project (Figure 4), which represents a high-grade vein opportunity on the highly gold prospective Gilmore suture within the famous Lachlan Fold belt of NSW.

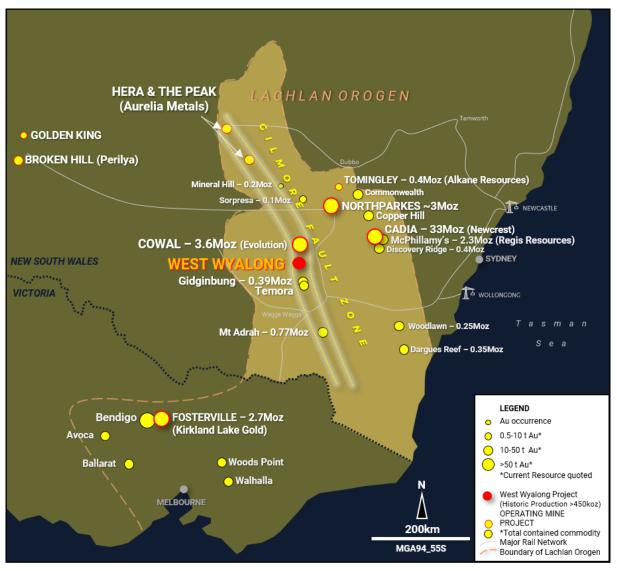


Figure 4 – Regional setting and location of the West Wyalong Gold Project in relation to other gold projects in New South Wales and Victoria (map taken from Saturn ASX announcement on 28 April 2020 where full references are provided).

Appendix 7:

JORC Code, 2012 Edition – Table 1 – Apollo Hill Exploration Area

Section 1 Sampling Techniques and Data

(Criteria in this section apply to the Apollo Hill, Apollo Hill Regional, Apollo Hill Hanging-wall and Ra and Tefnut exploration areas all succeeding sections).

Table II Extract of JORC Code 2012 Table 1

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Measures taken to ensure the representivity of RC sampling include close supervision by geologists, use of appropriate sub-sampling methods, routine cleaning of splitters and cyclones, and RC rigs with sufficient capacity to provide generally dry, reasonable recovery samples. Information available to demonstrate sample representivity includes RC sample weights, sample recovery, sample consistency, field duplicates, standards and blanks. RC holes were sampled over 1 m intervals using a cone-splitter mounted to the RC drill rig. RC samples were analysed by Bureau Veritas in Kalgoorlie and at ALS in Perth (Wangara/Malaga). At the laboratories, the samples were oven dried and crushed to >70 % passing 2 mm, and pulverised to 85 % passing <75 μm, with analysis by 50 g fire assay. Diamond core was drilled HQ3 and PQ3 dependent on weathering profile and ground conditions. The core was cut in half using an Almonte diamond saw at MavEx in Kalgoorlie, where half core was submitted for analysis. Half core samples were taken with a diamond saw, generally on 1m intervals, dependent on geological boundaries where appropriate (lengths ranging from a minimum 0.3 m to a maximum of 1.2 m). Sampling was undertaken using Saturn Metals Limited (STN) sampling and QAQC procedures in line with industry best practice, which includes the submission. All samples collected are recorded in the Company's Database.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling used 5.5-inch face-sampling bit. All RC were surveyed by Gyro, every 30 m down hole. Diamond core was NQ2, HQ3 or PQ3 diameter core. All diamond holes were surveyed by Gyro, every 5 m down hole. All core was oriented using a Reflex orientation tool, which was recorded at the drill site, and all core pieced back together and orientated at the STN core yard at Apollo Hill.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC sample recovery was visually estimated by volume for each 1 m bulk sample bag and recorded digitally in the sample database. Little variation was observed. Measures taken to maximise recovery for RC drilling included use of face sampling bits and drilling rigs of sufficient capacity to provide generally dry, high recovery samples. RC sample weights indicate an average recovery of 85 % to 95 % and were dry. The cone splitter was regularly cleaned with compressed air at the completion of each rod. The RC drilling was completed using auxiliary compressors and boosters to keep the hole dry and ensure the sample was lifted to the sampling equipment as efficiently as possible. The cyclone and cone splitter were kept dry and clean, with the cyclone cleaned after each drillhole and the splitter cleaned after each rod to minimise down-hole or cross-hole contamination. The 3 kg calico bag samples

Criteria	JORC Code Explanation	Commentary
		representing 1 m were taken directly from the cyclone and packaged for freight to Kalgoorlie. The calico represents both fine and coarse material from the drill rig.
		Diamond core recovery was measured and recorded for each drill run. The core was physically measured by tape and recorded for each run. Core recovery was recorded as percentage recovered. All data was loaded into the STN database.
		Diamond drilling utilised drilling additives and muds to ensure the hole was conditioned to maximise recoveries and sample quality.
		There was no observable relationship between recovery and grade, or preferential bias between hole types observed at this stage.
		There was no significant loss of core reported in the mineralised parts of the diamond drillholes to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drillholes were geologically logged by industry standard methods, including depth, colour, lithology, alteration, sulphide, visible gold mineralisation and weathering.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Diamond core trays were photographed. RC chip trays were photographed. The logging is
	The total length and percentage of the relevant intersections logged.	qualitative in nature and of sufficient detail to support the current interpretation.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-	RC holes were sampled over 1 m intervals by cone- splitting. RC sampling was closely supervised by field geologists and included appropriate sampling methods, routine cleaning of splitters and cyclones, and rigs with sufficient capacity to provide generally dry, high recovery RC samples. Sample quality monitoring included weighing RC samples and field duplicates.
	sampling stages to maximise representivity of samples.	Half core was sent for assay for the entire hole; no selective sampling was performed.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain	Assay samples were crushed to >70 % passing 3 mm, and pulverised to 90 % passing <75 μ m, with fire assay of 50 g sub-samples. Assay quality monitoring included reference standards and inter-laboratory checks assays.
	size of the material being sampled.	Duplicate samples were collected every 40 samples, and certified reference material and blank material was inserted every 25 samples of all drilling types.
		The project is at an early stage of evaluation and the suitability of sub-sampling methods and sub-sample sizes for all sampling groups has not been comprehensively established. The available data suggests that sampling procedures provide sufficiently representative sub-samples for the current interpretation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF	Sampling included field and lab duplicates, blind reference standards, field blanks and inter-laboratory checks to confirm assay precision and accuracy with sufficient confidence for the current results, at a rate
	instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	of 5 %. RC and diamond samples were submitted to Bureau Veritas in Kalgoorlie and ALS in Perth (Malaga / Wangara) where they were prepared, processed and produced via 50 g observe fire process.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	analysed via 50 g charge fire assay. As per internal company procedures, standard certified reference material is submitted with the rock chip samples, and all passed QAQC.
Verification of sampling and assaying	independent or alternative company personnel. The use of twinned holes.	No independent geologists were engaged to verify results. STN geologists were supervised by the Company's Exploration Manager. No adjustments were made to any assays of data.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Logs were recorded by field geologists on hard copy sampling sheets which were entered into spreadsheets for merging into a central SQL database.

Criteria	JORC Code Explanation	Commentary
		Laboratory assay files were merged directly into the database. The project geologists routinely validate data when loading into the database.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill collars, rock chip and soil sample locations are initially surveyed by hand-held GPS, utilising GDA94, Zone 51. An error of +/-5 m is expected from a hand- held GPS.
	Specification of the grid system used. Quality and adequacy of topographic control.	Subsequently all diamond and RC holes were down- hole surveyed using a gyroscopic survey tool.
		A topographic triangulation was generated from drillhole collar surveys and the close-spaced (50 m) aeromagnetic data.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Apollo Hill mineralisation has been tested by generally 30 m spaced traverses of southwesterly inclined drillholes towards 225°. Across strike spacing is variable. Material within approximately 50 m of surface has been generally tested by 15 m to 30 m spaced holes, with deeper drilling ranging from locally 20 m to greater than 60 m spacing. Details of the reported holes are shown in Figures 1, 2 and Appendix 3 & 4.
		The data spacing is sufficient to establish geological and grade continuity.
Orientation of data in relation to geological structure	1 0 1	No bias is assumed from the samples due to the orientation of samples.
Sample security	The measures taken to ensure sample security.	Apollo Hill is in an isolated area, with little access to the general public. STN's field sampling was supervised by STN geologists. Sub-samples selected for assaying were collected in heavy-duty poly-woven bags which were immediately sealed. These bags were delivered to the assay laboratory by independent couriers, STN employees or contractors. Results of field duplicates, blanks and reference material, and the general consistency of results between sampling phases provide confidence in the general reliability of the drilling data.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person independently reviewed STN sample quality information and database validity. These reviews included consistency checks within and between database tables and comparison of assay entries with original source records for STN's drilling. These reviews showed no material discrepancies. The Competent Person considers that the Apollo Hill drilling data has been sufficiently verified to provide an adequate basis for the current reporting of exploration results.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section).

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical	The Apollo Hill Project lies within E39/1198, M31/486 and M39/296. These tenements are wholly owned by STN. These tenements, along with certain other tenure, are the subject of a 5 % gross over-riding royalty (payable to HHM) on Apollo Hill gold production exceeding 1 Moz. M39/296 is the subject of a $1 t$ royalty (payable to a group of parties) on any production. The tenements are in good standing and no known impediments exist.

Criteria	JORC Code Explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	AC, RC and diamond drilling has been undertaken by previous tenement holders including Battle Mountain, Apex Minerals, Fimiston Mining, Hampton Hill, Homestake, MPI and Peel Mining.
Geology	Deposit type, geological setting, and style of mineralisation.	The Apollo Hill Project comprises two major zones: the 'Mainlode/Hanging Wall' zones in the east of the project area, and the Ra-Tefnut zone in the south-west. Gold mineralisation is associated with quartz veins and carbonate-pyrite alteration along a steeply north-east dipping contact between ductile Schistose rocks to the west, and brittle Mafic dominated rocks to the east. The combined mineralised zones extend over a strike length of approximately 2.5 km and have been intersected by drilling to approximately 350 m vertical depth.
Drillhole	A summary of all information material to the	The depth of complete oxidation averages around 4 m with depth to fresh rock averaging around 21 m. Any relevant information material to the understanding
Information	understanding of the exploration results including a tabulation of the following information for all Material drillholes:	of exploration results has been included within the body of the announcement or as appendices. No information has been excluded.
	 easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole. down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	For exploration data, no top-cuts have been applied. All reported AC, RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No metal equivalent values are used for reporting exploration results.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be	All drillhole intercepts are measured in downhole metres, with true widths estimated to be about 60 % of the down-hole width.
intercept lengths	reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	The orientation of the drilling has the potential to introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Refer to Figures within the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	For any exploration results, all results are reported, no lower cut-off or top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.

Criteria	JORC Code Explanation	Commentary
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	RC drilling continues at Apollo Hill targeting further resource growth around these and other exciting intersections reported in recent months. The results in this announcement, along with previously reported results in recent months, will contribute towards a second Mineral Resource upgrade this year, a maiden Ore Reserve and the impending Pre-Feasibility Study (PFS) – all scheduled for the second half of 2025. In addition, further AC and RC drilling is planned to improve confidence in and test interpreted mineralised prospects over Saturn's greater tenement package. AC drilling will also continue across the nearby geological terrain. Further metallurgical work is planned to be completed as development of the Apollo Hill Project progresses. Further Geotechnical work is planned to be completed as development of the Apollo Hill Project progresses.

