

SIX RIGS FAST-TRACK MAJOR DRILL CAMPAIGN AT IRIS TREND – APOLLO HILL

HIGHLIGHTS

- **Six rigs** are drilling at the Apollo Hill Gold Project along **the Iris Trend** (Figure 1).
- Over **30,000m** of planned RC drilling is targeting near-surface mineralisation extensions and resource in-fill, aiming to upgrade the 2.24Moz Apollo Hill Mineral Resource¹ and the recently announced 1.58Moz maiden Ore Reserve².
- Drilling is focused on the **higher-grade** Iris footwall and interpreted geological structures immediately to the north of the current Mineral Resource.
- Results will contribute towards **Saturn's Definitive Feasibility Study and updated Ore Reserve, scheduled for release later this year.**

Figure 1 – Oblique view of the Apollo Hill Gold Project looking north. The six drill rigs currently operating are shown. Contracting drilling companies on site include Topdrill, K-Drill, PXD and BWE Drilling. All six drill rigs are shown drilling the 2,600m Iris Trend (Picture captured 15/01/2026).

¹ Complete details of the Mineral Resource (137.1Mt @ 0.51g/t Au for 2,239,000oz Au) and the associated Competent Persons Statement were published in the ASX Announcement dated 18 July 2025 titled “Apollo Hill Gold Resource Increases to 2.24Moz; 82% Classified as Measure and Indicated”. Saturn reports that it is not aware of any new information or data that materially affects the information included in that Mineral Resource announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and there have been no adverse material changes

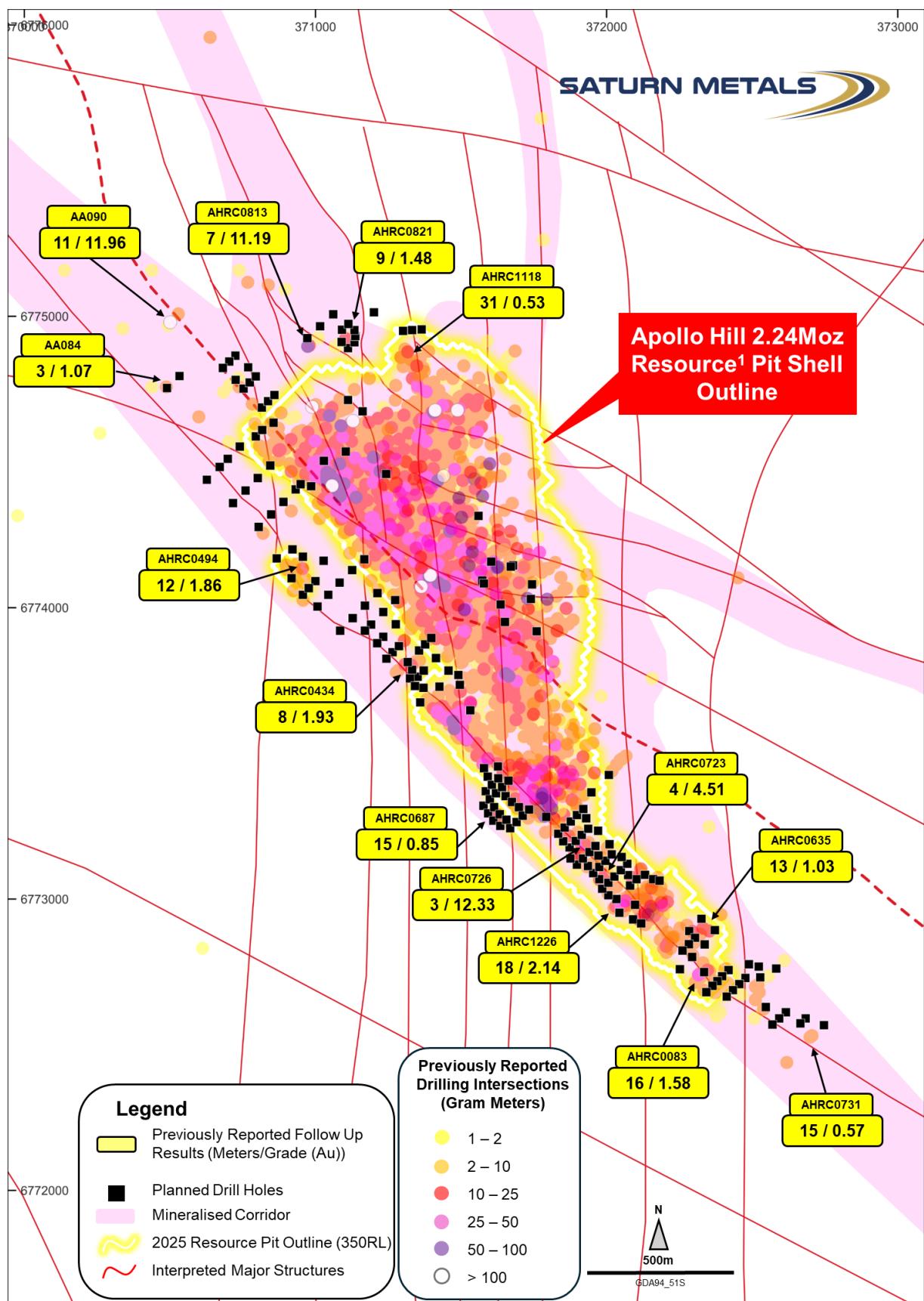
² Complete details of the Ore Reserve (104.6Mt @ 0.47g/t Au for 1,586,000oz Au) and the associated Competent Persons Statement were published in the ASX Announcement dated 17 December 2025 titled “Apollo Hill Pre-Feasibility Study and Maiden Ore Reserve”. Saturn reports that it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and there have been no adverse material changes.

Saturn Metals Limited (ASX: STN) (“**Saturn**” or “**the Company**”) is pleased to advise that it has mobilised six drill rigs to undertake the current phase of Resource development and step-out drilling at its 100%-owned **Apollo Hill Gold Deposit** near Leonora in Western Australia.

This program represents the next step in Saturn’s strategy to upgrade the 2.24Moz Apollo Hill Mineral Resource¹ ahead of the DFS. While the initial phase of drilling is prioritising shallower mineralisation along the Iris, Ra and Tefnut trend by following up previously reported intersections such as 18m @ 2.14g/t Au in AHRC1226 (Figure 2), drilling will also follow up on promising exploration intersections to the north of Apollo Hill, including:

- 7m @ 11.19g/t Au from 172m (AHRC0813); and
- 9m @ 1.48g/t Au from 21m (AHRC0821) (Figure 2).

In-fill drilling is also underway in the main deposit area to support Mineral Resource category upgrades and Ore Reserve expansion (Figure 2).


Saturn’s Managing Director Ian Bamborough said:

“We have launched our next major drill campaign at Apollo Hill, reflecting our growing confidence in this highly productive gold system and the potential of the recently discovered Iris corridor.”

“The Company’s very strong cash position, which sees us fully funded to beyond completion of the DFS, has enabled us to step-up the number of rigs on site and accelerate this ambitious campaign, which is scheduled for completion during January and February.”

“The new phase of drilling will target shallower, higher grade and deposit-flanking zones which have the greatest potential to deliver material near-term impact on our mineral inventory, development studies and pathway to production.”

“We look forward to receiving and reporting results over the coming weeks.”

Figure 2 – Plan view showing the planned and in-progress drill program (black squares), a selection of historical follow-up targets intercepts (yellow call-outs), and historical drill holes with >1 gram-meter intercepts (coloured circles).

This announcement has been approved for release by the Saturn Metals Limited Board of Directors.

IAN BAMBOROUGH
Managing Director

For further information please contact:

Investors & Corporate:

Ian Bamborough
Managing Director
T: +61 (0)8 6234 1114
E: info@saturnmetals.com.au

Media Inquiries:

Nicholas Read
Read Corporate
T: +61 (0)8 9388 1474
E: nicholas@readcorporate.com.au

Competent Persons Statement:

The information in this report that relates to exploration results is based on information compiled and/or reviewed by David Smith, a Competent Person who is a Member of The Australian Institute of Geoscientists. Mr Smith is a full-time employee of the Company, in addition to being a shareholder of the Company. Mr Smith has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Smith consents to the inclusion in the report of the matters based on his information in the form and context in which it appears

Appendix 1:

Apollo Hill Deposit – Mineral Resources

Mineral Resource Classification	Oxidation	Tonnes (Mt)	Au (g/t)	Au metal (Kozs)
Measured	Oxide	0.04	0.70	1
	Transitional	1.3	0.57	24
	Fresh	3.5	0.52	59
Subtotal		4.8	0.54	83
Indicated	Oxide	0.7	0.51	11
	Transitional	7.1	0.50	113
	Fresh	99.7	0.51	1629
Subtotal		107.4	0.51	1,753
Inferred	Oxide	0.1	0.50	1
	Transitional	0.9	0.49	15
	Fresh	23.8	0.51	387
Subtotal		24.8	0.51	403
Grand Total		137.1	0.51	2,239

Complete details of the Mineral Resource (137.1Mt @ 0.51g/t Au for 2,239,000oz Au) and the associated Competent Persons Statement were published in the ASX Announcement dated 18 July 2025 titled “Apollo Hill Gold Resource Increases to 2.24Moz; 82% Classified as Measure and Indicated”. Saturn reports that it is not aware of any new information or data that materially affects the information included in that Mineral Resource announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and there have been no adverse material changes.

Appendix 2:

Apollo Hill Deposit – Ore Reserves

Mineral Reserve Classification	Oxidation	Tonnes (Mt)	Au (g/t)	Au Metal (koz)
Proven	Oxide	0.0	0.56	0
	Transitional	1.4	0.54	24
	Fresh	3.4	0.49	54
Subtotal		4.8	0.51	78
Probable	Oxide	0.6	0.50	9
	Transitional	7.4	0.45	108
	Fresh	91.9	0.47	1,391
Subtotal		99.8	0.47	1,508
Grand Total		104.6	0.47	1,586

Complete details of the Ore Reserve (104.6Mt @ 0.47g/t Au for 1,586,000oz Au) and the associated Competent Persons Statement were published in the ASX Announcement dated 17 December 2025 titled “Apollo Hill Pre-Feasibility Study and Maiden Ore Reserve”. Saturn reports that it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and there have been no adverse material changes.

Appendix 3:

Saturn Metals Project Areas

Apollo Hill (29.15°S and 121.68°E) is located approximately 60km south-east of Leonora in the heart of WA's goldfields region (Figure 2). The deposit and the Apollo Hill project are 100% owned by Saturn and are surrounded by good infrastructure and several significant gold deposits. The Apollo Hill Project has the potential to become a large tonnage, simple metallurgy, low strip open pit mining operation.

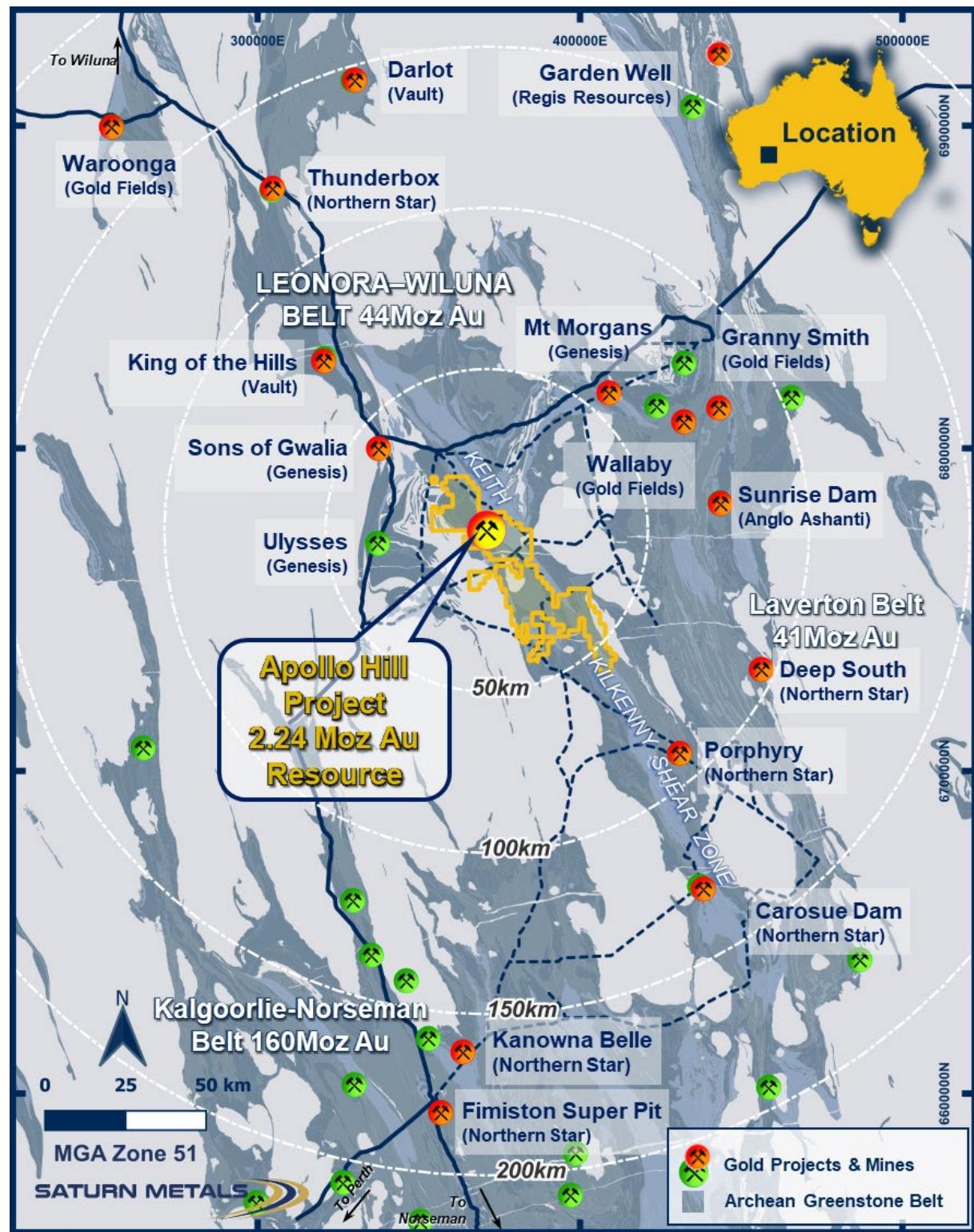


Figure 2 – Apollo Hill location, Saturn Metals' tenements and surrounding gold deposits, gold endowment and infrastructure.

In addition, Saturn has a second quality gold exploration project in Australia. The Company has an option to earn an 85% joint venture interest in the West Wyalong Project (Figure 3), which represents a high-grade vein opportunity on the highly gold prospective Gilmore suture within the famous Lachlan Fold belt of NSW.

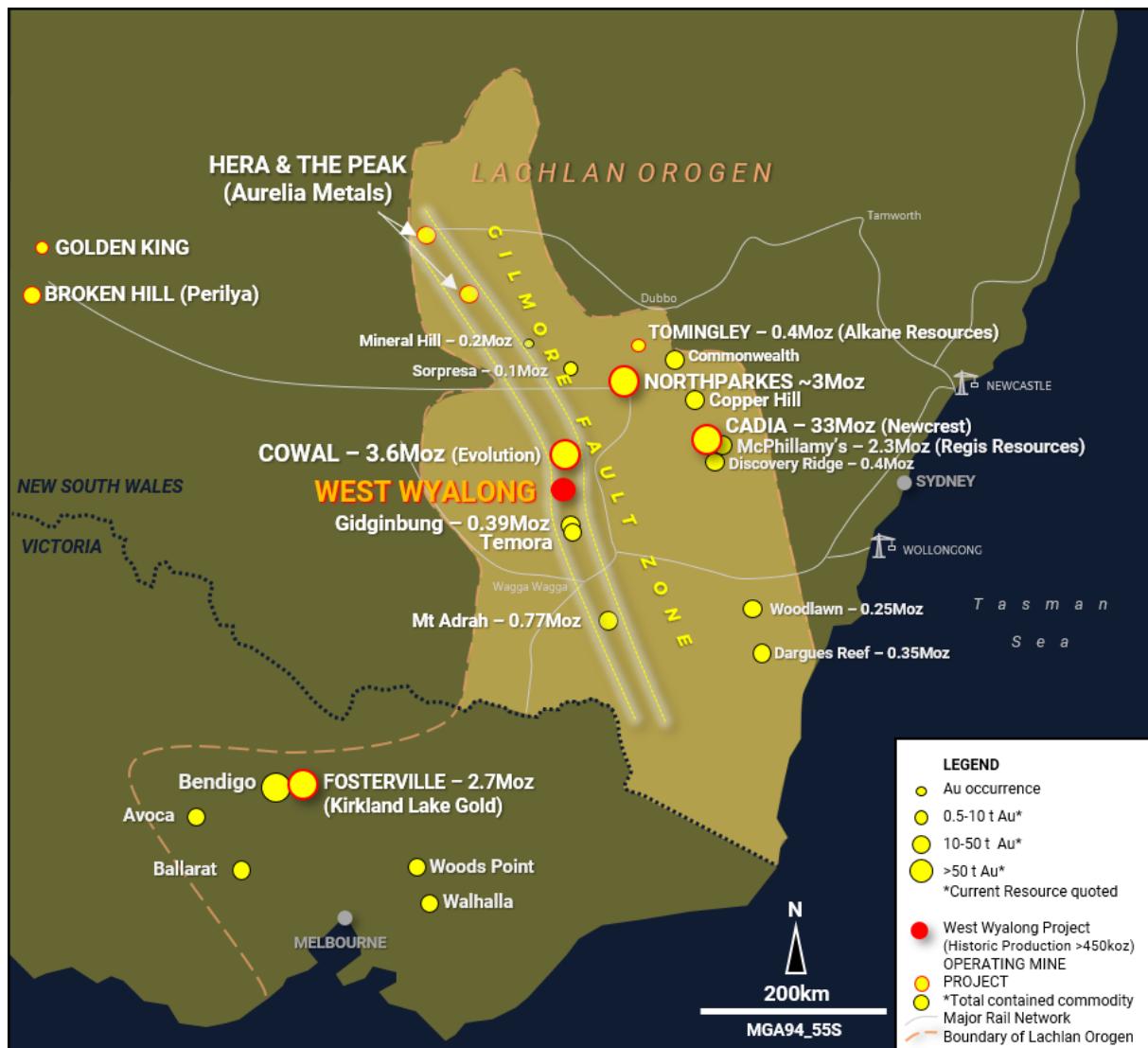


Figure 3 – Regional setting and location of the West Wyalong Gold Project in relation to other gold projects in New South Wales and Victoria (map taken from Saturn ASX announcement on 28 April 2020 where full references are provided).

Appendix 4:

JORC Code, 2012 Edition – Table 1 – Apollo Hill Exploration Area

Section 1 Sampling Techniques and Data

(Criteria in this section apply to the Apollo Hill, Apollo Hill Regional, Apollo Hill Hanging-wall and Ra and Tefnut exploration areas all succeeding sections).

Table II Extract of JORC Code 2012 Table 1

Criteria	JORC Code Explanation	Commentary
Sampling techniques	<p>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</p> <p>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</p> <p>Aspects of the determination of mineralisation that are Material to the Public Report.</p> <p>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</p>	<p>Measures taken to ensure the representivity of RC sampling include close supervision by geologists, use of appropriate sub-sampling methods, routine cleaning of splitters and cyclones, and RC rigs with sufficient capacity to provide generally dry, reasonable recovery samples. Information available to demonstrate sample representivity includes RC sample weights, sample recovery, sample consistency, field duplicates, standards and blanks.</p> <p>RC holes were sampled over 1 m intervals using a cone-splitter mounted to the RC drill rig. RC samples were analysed by Bureau Veritas in Kalgoorlie. At the laboratory the samples were oven dried and crushed to 90% passing 2 mm, and pulverized to 95% passing 106 microns, with analysis by a 40 g or 50 g fire assay.</p> <p>RC samples were generally taken at 1m intervals. Historically some samples were composited to 4 m to produce a 3 kg representative sample to be submitted to the laboratory. If the 4 m composite sample was anomalous (Au>0.16 g/t), the original 1 m samples were retrieved and submitted to the laboratory. In general, the expected mineralised zones are all sampled using 1 m intervals.</p> <p>Diamond core was drilled HQ3 and NQ2 dependent on weathering profile and ground conditions. The core was cut in half using a Corewise diamond saw at the ALS laboratory in Perth, an Almonte diamond saw at Petricore in Kalgoorlie and an Almonte diamond saw at Mavex in Kalgoorlie. Both half and full core were submitted for analysis.</p> <p>Half and full core samples were taken with a diamond saw, generally on 1 m intervals, dependent on geological boundaries where appropriate (lengths ranging from a minimum 0.3 m to a maximum of 1.2 m). Whole core samples were historically taken within the zones of mineralisation to account for coarse grained nature of the gold.</p> <p>Sampling was undertaken using STN sampling and QAQC procedures in line with industry best practice, which includes the submission of standards, blanks and duplicates at regular intervals within each submission, for RC and Diamond samples.</p> <p>All samples collected are recorded in the Company's Database.</p>
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diametre, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	<p>RC drilling used 5.5-inch face-sampling bit.</p> <p>Diamond core was HQ3 or NQ2 diametre core</p> <p>All RC holes were surveyed by Gyro, every 30 m down hole.</p> <p>All Diamond holes were surveyed by Gyro, every 15-30m down hole.</p> <p>All core was orientated used a Reflex orientation tool, which was recorded at the drill site, and all core pieced back together and orientated at the STN core yard at Apollo Hill.</p>
Drill sample recovery	<p>Method of recording and assessing core and chip sample recoveries and results assessed.</p> <p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p>	RC sample recovery was visually estimated by volume for each 1 m bulk sample bag and recorded digitally in the sample database. Very little variation was observed.

Criteria	JORC Code Explanation	Commentary
	<p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<p>Measures taken to maximize recovery for RC drilling included use of face sampling bits and drilling rigs of sufficient capacity to provide generally dry, high recovery samples.</p> <p>RC sample weights indicate an average recovery of 85% to 95% and were dry.</p> <p>The cone splitter was regularly cleaned with compressed air at the completion of each rod.</p> <p>The RC Drilling was completed using auxiliary compressors and boosters to keep the hole dry and ensure the sample was lifted to the sampling equipment as efficiently as possible.</p> <p>The cyclone and cone splitter were kept dry and clean, with the cyclone cleaned after each drillhole, and the splitter cleaned after each rod to minimize down-hole or cross-hole contamination.</p> <p>The 2.5-3 kg calico bag samples representing 1 m were taken directly from the cyclone and packaged for freight to Kalgoorlie. The calico represents both fine and coarse material from the drill rig.</p> <p>Diamond core recovery was measured and recorded for each drill run. The core was physically measured by tape and recorded for each run. Core recovery was recorded as percentage recovered. All data was loaded into the STN database.</p> <p>Diamond drilling utilised drilling additives and muds to ensure the hole was conditioned to maximize recoveries and sample quality.</p> <p>There was no observable relationship between recovery and grade, or preferential bias between hole-types observed at this stage.</p> <p>There was no significant loss of core reported in the mineralised parts of the diamond drillholes to date.</p>
Logging	<p>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</p> <p>The total length and percentage of the relevant intersections logged.</p>	<p>All holes in the current program have been geologically logged to a high level of detail to support the definition of geological domains appropriate to support Mineral Resource estimation and classification.</p> <p>All geologists logging drilling have been trained how to log to a high level of detail through their university studies as well as by supervising geologists experienced in the geology of the region.</p> <p>Representative rock chips from every metre were collected in chip trays and logged by the geologist at the drill site.</p> <p>Lithology, weathering (oxidation state), veining, mineralisation and alteration are recorded in detail using standard digital logging sheets and defined look-up tables to ensure that all data are collected in a consistent manner. Reference cards aided the logging of sulphides, which along with the experience of logging geologists, ensure sulphide estimates are reliable and reproducible.</p> <p>Drill core is placed in core trays and logged on site in the core yard facility. In addition, detailed structural and geotechnical logging is also completed on diamond core.</p> <p>All core trays and chip trays are photographed and saved on Saturn's intranet server.</p> <p>Logging data are entered using Toughbook computers. All data are validated by the logging geologist before being entered into an SQL database.</p>
Sub-sampling techniques and sample preparation	<p>If core, whether cut or sawn and whether quarter, half or all core taken.</p> <p>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</p> <p>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</p>	<p>RC holes were sampled over 1 m intervals by cone-splitting. RC sampling was closely supervised by field geologists and included appropriate sampling methods, routine cleaning of splitters and cyclones, and rigs with sufficient capacity to provide generally dry, high recovery RC samples. Sample quality monitoring included weighing RC samples and field duplicates.</p>

Criteria	JORC Code Explanation	Commentary
	<p>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</p> <p>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</p> <p>Whether sample sizes are appropriate to the grain size of the material being sampled.</p>	<p>Core was cut in half and submitted to the laboratory. Historically, some full core samples have been submitted.</p> <p>Assay samples were crushed to 90% passing 2 mm. A 3kg split sub sample was then pulverised to 85% passing 75 microns using an LM5 pulverising mill, with analysis by 40 g or 50 g fire assay with AAS finish. Assay quality monitoring included reference standards and inter-laboratory checks assays.</p> <p>Duplicate samples were collected every 40 samples, and certified reference material and blank material were inserted every 25 samples.</p> <p>The available data suggests that sampling procedures provide sufficiently representative sub-samples for the current interpretation.</p>
Quality of assay data and laboratory tests	<p>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</p> <p>For geophysical tools, spectrometres, handheld XRF instruments, etc., the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p> <p>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</p>	<p>Field quality control procedures adopted comprised of entering a sequence of matrix-matched commercially available certified reference materials (CRMs), and blanks into the sample run at a frequency of approximately 1 in 25 or 1 in 50 samples. Field duplicates were collected at a frequency of approximately 1 in 40 samples.</p> <p>Gold CRMs have been sourced from Geostats Pty Ltd and are used to check accuracy and bias of the analytical method. The certified values have ranged between 0.18 g/t Au and 2.38 g/t Au.</p> <p>Washed quartz sand was utilised as blank material.</p> <p>QAQC samples were monitored on a batch-by-batch basis. An assay batch is accepted if the blank samples and standards are within the + 3SD (standard deviations). One failed standard can cause rejection if the results around the failed standard are not in the normal grade range. A batch is also re-assayed when assay results from two or more standards are outside the acceptable limits. The inserted blank materials did not show any consistent issues with sample contamination.</p> <p>Review of CRMs and blanks suggest that an acceptable level of accuracy (lack of bias) has been established.</p> <p>The performance of field duplicates in RC samples is generally reasonable and the variations are related to the style of mineralisation.</p> <p>Internal laboratory checks are conducted, including insertion of CRMs, blanks and conducting laboratory duplicates. Review of the internal laboratory QAQC checks suggests the laboratory is performing within acceptable limits.</p> <p>Inter-laboratory checks are completed at a rate of 5% of all samples, re-testing the pulps (remains of the pulverised sample) at a different laboratory to the original analysis</p>
Verification of sampling and assaying	<p>The verification of significant intersections by either independent or alternative company personnel.</p> <p>The use of twinned holes.</p> <p>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</p> <p>Discuss any adjustment to assay data.</p>	<p>No independent geologists were engaged to verify results. Saturn's geologists were supervised by the company's Exploration Manager, or delegate.</p> <p>High standard QAQC procedures are in place. Therefore, repeatability issues from a QAQC point of view are not considered to be significant.</p> <p>Significant and/or unexpected intersections were reviewed by other company personnel through review of geological logging data, physical examination of remaining samples and review of digital geological interpretations.</p> <p>All assay data were accepted into the database as supplied by the laboratory.</p> <p>Data importation into the database is documented through standard operating procedures and is guided by SQL import validations to prevent incorrect data capture/importation.</p>

Criteria	JORC Code Explanation	Commentary
		<p>Geological, structural and density determination data are directly captured in the database through a validation-controlled interface using Toughbook computers and SQL database import validations.</p> <p>Primary data are stored in their source electronic form. Assay data are retained in both the original certificate (.pdf) form and the excel files received from the laboratory. Data entry, validation and storage are discussed in the section on database integrity below.</p> <p>The database contains several RC and diamond core holes that are sufficiently close to be used to prepare twinned datasets. Twinned data comparisons indicated similar characteristics in terms of grade tenor and intercept thicknesses, with generally no significant issues identified.</p> <p>No adjustments to assay data were undertaken.</p>
Location of data points	<p>Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</p> <p>Specification of the grid system used.</p> <p>Quality and adequacy of topographic control.</p>	<p>Collars are initially surveyed by hand-held GPS, utilising GDA94, Zone 51.</p> <p>Final drillhole collars are all surveyed by DGPS by an external contractor - Goldfield Surveyor. No adjustments were undertaken of DGPS data.</p> <p>All RC and diamond holes were down-hole surveyed using a gyroscopic survey tool.</p> <p>A topographic triangulation 3D DXF was generated by PhotoSat from 50cm pixel resolution WorldView-2 satellite photos, the survey utilities 925 control points (Surveyed drill hole collar points). The survey projects vertical accuracy is 43 cm RMSE; 72 cm LE90.</p>
Data spacing and distribution	<p>Data spacing for reporting of Exploration Results.</p> <p>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</p> <p>Whether sample compositing has been applied.</p>	<p>Apollo Hill mineralisation has been tested by generally 30 m spaced traverses of south- westerly inclined drillholes towards 225°. Across strike spacing is variable. Material within approximately 50 m of surface has been generally tested by 12.5 m to 30 m spaced holes, with deeper drilling ranging from 30 m to greater than 60 m spacing.</p> <p>The data spacing is sufficient to establish geological and grade continuity</p>
Orientation of data in relation to geological structure	<p>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</p> <p>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</p>	<p>Mineralised zones dip at an average of around 30° to 60° towards the northeast. Detailed orientations of all short-scale mineralised features have not yet been confidently established. The majority of the drillholes were inclined at around 60° to the southwest.</p> <p>No bias is assumed from the samples due to the orientation of samples.</p>
Sample security	<p>The measures taken to ensure sample security.</p>	<p>Apollo Hill is in an isolated area, with little access to the general public.</p> <p>All drill samples are systematically numbered and placed in pre-printed (numbered) calico bags and placed into numbered polyweave bags that were tied securely with cable ties.</p> <p>Assay samples were stored at a dispatch area and dispatched weekly or bi-weekly. Samples were shipped via a local logistics company directly to laboratories in Kalgoorlie.</p> <p>The sample dispatches were accompanied by supporting sample submission documentation signed by the geologist and showing the sample submission number, analysis suite and number of samples.</p> <p>The chain of custody is maintained by the laboratories once the samples are received from site and a full audit is conducted.</p> <p>Assay results are emailed to the responsible geology administrators in Perth and are loaded into the SQL database by Saturn's database managers. QAQC on import is completed as a batch summary report before the results are finalised.</p>
Audits or reviews	<p>The results of any audits or reviews of sampling techniques and data.</p>	<p>The Competent Person independently reviewed STN sample quality information and database validity.</p>

Criteria	JORC Code Explanation	Commentary
		These reviews included consistency checks within and between database tables and comparison of assay entries with original source records for STN's drilling. These reviews showed no material discrepancies. The Competent Person considers that the Apollo Hill drilling data has been sufficiently verified to provide an adequate basis for the current reporting of exploration results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section).

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	<p>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</p> <p>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</p>	<p>The Apollo Hill Project lies within Exploration License E39/1198, M31/486 and M39/296. These tenements are wholly owned by Saturn Metals Limited. These tenements, along with certain other tenure, are the subject of a 5% gross over-riding royalty (payable to HHM) on Apollo Hill gold production exceeding 1 Moz. M39/296 is the subject of a \$1/t royalty (payable to a group of parties) on any production.</p> <p>The tenements are in good standing, and no known impediments exist.</p>
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	RC and diamond drilling by previous tenement holders, At Apollo Hill, provides around 13.5% of the estimation dataset. The data is primarily from RC and diamond drilling by Battle Mountain, Apex Minerals, Fimiston Mining, Hampton Hill, Homestake, MPI and Peel Mining.
Geology	Deposit type, geological setting, and style of mineralisation.	<p>The Apollo Hill project comprises two deposits/trends: the main Apollo Hill deposit comprised of the 'Main Iode' and 'Hanging Wall' Lodes in the northwest of the project area, and the Southern Apollo Hill Corridor trend, comprised of the Wadjet-Ra-Iris-Tefnut lodes in the south. Gold mineralisation is associated with quartz veins and carbonate-pyrite alteration along a steeply north-east dipping contact between a schist unit to the west, and mafic dominated volcanic and intrusive rocks to the east. The combined mineralised zones extend over a strike length of approximately 3 km and have been intersected by drilling to approximately 500 m vertical depth.</p> <p>The depth of complete oxidation averages around 4 m with depth to fresh rock averaging around 21 m.</p>
Drillhole Information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:</p> <ul style="list-style-type: none"> • easting and northing of the drillhole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole. • down hole length and interception depth • hole length. <p>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</p>	<p>Any relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices.</p> <p>No information has been excluded.</p>
Data aggregation methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation</p>	<p>For exploration data, no top-cuts have been applied. All reported AC, RC and diamond drill assay results have been length weighted (arithmetic length weighting).</p> <p>No metal equivalent values are used for reporting exploration results.</p>

Criteria	JORC Code Explanation	Commentary
	<p>should be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').</p>	<p>All drillhole intercepts are measured in downhole metres, with true widths estimated to be about 60 % of the down-hole width.</p> <p>The orientation of the drilling has the potential to introduce some sampling bias (positive or negative).</p>
Diagrams	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.</p>	<p>Refer to Figures and Tables within the body of the text.</p>
Balanced reporting	<p>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</p>	<p>For any exploration results, all results are reported, no lower cut-off or top-cuts have been applied.</p>
Other substantive exploration data	<p>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</p>	<p>At this stage there are no substantive other exploration data from the recent drilling that is meaningful and material to report.</p>
Further work	<p>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</p> <p>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</p>	<p>Additional RC drilling is scheduled for the remainder of calendar year 2025 to support the development studies of the Apollo Hill Project.</p> <p>In addition, AC drilling will be conducted over areas designated for infrastructure to assess the underlying ground for gold anomalies before placing non-movable infrastructure. This will further support the advancement of the Apollo Hill Project.</p> <p>Further metallurgical diamond drilling is planned to continue as the project develops, along with additional geotechnical diamond drilling to assist in the project's progression.</p>